天津大學物理化學考研大綱
『壹』 中國石油大學(北京)物理化學考研 。862物理化學是什麼參考書啊,和814一樣嗎官網沒有。。。。。。
參考書
中國石油大學(北京)物理化學考研參考書是862,不是814,你可以在碩士招生專內業目錄里看到,就在石油大容學的研究生院網站上。
862是《物理化學》(上、下冊)(第五版),天津大學編,高等教育出版社,2009.
814是《物理化學》(上、下冊)(第四版),天津大學編,高等教育出版社,2001.
現在上課用的物化很多都是天大五版的了。
物理化學考試大綱
課程名稱:物理化學
科目代碼:862
適用專業:化工所有專業
參考書目:《物理化學》(上、下冊)(第五版)高等教育出版社,2009,天津大學;
(物理化學實驗教材可由下列教材中任選一種)
《物理化學實驗》石油大學出版社吳肇亮等;
《基礎化學實驗》(上、下冊)石油工業出版社,2003,吳肇亮等
『貳』 天津大學化工學院考研專業課主要考哪幾門
天津大學化學工程(專業學位)專業初試專業課按方向確定01是826化工原理;02是839物理化學;03是858高分子化學。復試專業課都是化學工程與技術綜合考試
。具體如下。
天津大學化學工程(專業學位)專業2015年考研招生簡章招生目錄
專業代碼:085216
研究方向
0107085216
0207085216
0307085216
考試科目
0107085216:
①101思想政治理論
②204英語二
③302數學二
④826化工原理
0207085216:
①101思想政治理論
②204英語二
③302數學二
④839物理化學
0307085216:
①101思想政治理論
②201英語一
③302數學二
④858高分子化學
復試科目、復試參考書
復試科目:
化學工程與技術綜合考試
備註:
1、化學工程方向選第一組題或第二組題;
2、電化學方向只選第二組題;
3、其它方向均可三組題任選
『叄』 天津大學考研(化學工程與工藝專業)需要考試的科目··
天津大學考研化學工程和化學工藝為兩個專業,均考數學二,具體考試科目如下:
化學工程:①101思想政治理論②201英語一③302數學二④826化工原理或839物理化學頌戚
化學工藝:①101思想政治理論②201英語一③302數學二④826化工原理或839物理化學
兩個專業考試科目完全一致,第一科為思想政治理論,第二科為英語一,第三科為數學二,第四科為化工原理或物理化學,可從這兩科中任選一科進行考試。

(3)天津大學物理化學考研大綱擴展閱讀:
天津大學化學工程和化學工藝隸屬化工灶櫻派學院,學科主要內容如下:
1、化學工程:本學科面向化學工程學科發展前沿,以國家重大需求為導向,在傳質分離理論與精餾工程等域形成了突出的優勢,在膜分離、等領域形成了新的特色,科研和教學體系不斷完善。
主要研究方向為:精餾過程強化與節能;傳質過程界面現象與計算傳質學;工業結晶與粒子過程科學與技術;膜科學技術與環境化工;新能源化工與資源高效利用技術等。
2、化學工藝:隱賀是以產品為目標的產品工程學,為化學工業提供技術上最先進,經濟上最合理的方法、原理、設備與流程,包括有機化工、能源化工、材料化工、環境化工、高分子化工、無機化工等領域。
既涵蓋傳統的基礎領域,又與材料、能源、生物、醫葯、環境等學科交叉融合,培植新的生長點。它既是一個歷史悠久、曾做出重大貢獻的學科。
化學工藝的主要研究方向為:一碳化工與能源化工;功能化學品及新材料的綠色合成;生物質能源與生物質的化學加工。
參考資料來源:天津大學-研究生招生網
參考資料來源:天津大學-化工學院-研究生教育
『肆』 物理化學考研大綱
因為同樣的科目,不同學校的考試大綱可能會不同,建議首先到報考院校的官方網站進行查找,一般考試大綱會單獨列出,也有可能附加在招生簡章或專業目錄中。
以下列出的是天津大學839物理化學考綱,僅供參考。
一、考試的總體要求
1. 對本門課程中重要的基本概念與基本原理掌握其含義及適用范圍;
2. 掌握物理化學公式應用及公式應用條件。計算題要求思路正確。步驟簡明;
3. 掌握物理化學實驗中常用物理量的測量(包括原理、計算式、如何測量)。能正確使用常用物化儀器(原理、測量精度、使用范圍、注意事項)
二、考試內容及比例 (重點部分)
1. 氣體、熱力學第一定律、熱力學第二定律 (~22 %)
理想氣體狀態方程、范德華方程、壓縮因子定義。
熱力學第一、第二定律及其數學表達式; pVT 變化、相變化與化學反應過程中 W、 Q、 U、H、 S、 A 與 G 的計算;熵增原理及三種平衡判據。
了解熱力學基本方程和麥克斯韋關系式的簡單應用;克拉貝龍方程及克-克方程的應用。
2. 多組分熱力學及相平衡 (~18 %)
偏摩爾量、化學勢的概念;理想氣體、理想稀溶液的化學勢表達式;逸度、活度的定義以及活度的計算。
拉烏爾定律和亨利定律;稀溶液依數性的概念及簡單應用。
相律的應用;單組分相圖;二組分氣-液及凝聚系統相圖。
3. 化學平衡 (~10 %)
等溫方程;標准摩爾反應 Gibbs 函數、標准平衡常數與平衡組成的計算;溫度、壓力和惰性氣體對平衡的影響;同時平衡的原則。
4. 電化學 (~10 %)
電解質溶液中電導率、摩爾電導率、活度與活度系數的計算;電導測定的應用。
原電池電動勢與熱力學函數的關系, Nernst 方程;電動勢測定的應用;電極的極化與超電勢的概念。
5. 統計熱力學 (~6 %)
Boltzmann 分布;粒子配分函數的定義式;雙原子平、轉、振配分函數的計算;獨立子系統能量、熵與配分函數的關系, Boltzmann 熵定理。
6. 化學動力學 (~15 %)
反應速率、基元反應、反應分子數、反應級數的概念。
零、一、二級反應的動力學特徵及速率方程積分式的應用;阿累尼烏斯公式;對行、平行反應(一級)速率方程積分式的應用;復雜反應的近似處理法(穩態近似法、平衡態近似法)。
催化作用的基本特徵;光化反應的特徵及光化學第一、第二定律。
7. 界面現象與膠體化學( ~10 %)
彎曲液面的附加壓力與 Laplace 方程; Kelvin 方程與四種亞穩態;潤濕與鋪展現象及楊氏方程;化學吸附與物理吸附; Langmuir 吸附等溫式。
了解膠體的光學性質、動力性質及電學性質;掌握膠團結構的表示,電解質對溶膠的聚沉作用;了解乳狀液的穩定與破壞。
8. 實驗部分( ~10 %)
1) 恆溫槽的調節及粘度測定; 2)液體飽和蒸氣壓的測定; 3)反應焓的測定; 4)平衡常數的測定( ZnO 與 HCl 水溶液反應); 5)凝固點降低法測摩爾質量(萘-苯系統); 6)二元完全互溶液體蒸餾曲線(乙醇-正丙醇系統,阿貝折射儀); 7)二元凝聚系統相圖; 8) 原電池熱力學(電位差計的應用); 9)過氧化氫催化分解( KI 催化劑); 10)乙酸乙酯皂化反應(電導儀的應用); 11)表面張力的測定(氣泡最大壓力法),以上實驗的原理及物理量的測量方法。
三、試卷題型及比例
計算題 60%,概念題 30%,實驗題 10%。
四、考試形式及時間
考試形式均為筆試。考試時間為 3 小時。
『伍』 天津大學化學工程考研經驗分享
一、個人介紹:
親愛的學弟學妹們好,我是天津大學化學工程方向的碩士生學長。盡管考研的日子已經過去了一段時間,但是備考的日日夜夜,初試時的緊張,復試時的煎熬和錄取時的興奮,到現在還歷歷在目。

『陸』 求2007年數學二考研考綱,天津大學物理化學考研考綱 2006到2007年考研政治試題
2007年數學二考綱<考研考綱>
高等數學
一、函數、極限、連續
考試內容:函數的概念及表示法 函數的有界性、單調性、周期性和奇偶性 復合函數、反函數、分段函數和隱函數 基本初等函數的性質及其圖形 初等函數 函數關系的建立 數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算 極限存在的兩個准則:單調有界准則和夾逼准則 兩個重要極限:
,
函數連續的概念 函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求:
1. 理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系
2. 了解函數的有界性、單調性、周期性和奇偶性
3. 理解復合函數及分段函數的概念,了解反函數及隱函數的概念
4. 掌握基本初等函數的性質及其圖形,了解初等函數的概念
5. 理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關系
6. 掌握極限的性質及四則運演算法則
7. 掌握極限存在的兩個准則,並會利用它們求極限,掌握利用兩個重要極限求極限的方法.
8. 理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限,
9. 理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型
10. 了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理、介值定理),並會應用這些性質.
二、一元函數微分學
考試內容:導數和微分的概念 導數的幾何意義和物理意義 函數的可導性與連續性之間的關系 平面曲線的切線和法線 導數和微分的四則運算 基本初等函數的導數 復合函數、反函數、隱函數以及參數方程所確定的函數的微分法 高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數單調性的判別 函數的極值 函數圖形的凹凸性、拐點及漸近線 函數圖形的描繪 函數的最大值和最小值 弧微分 曲率的概念 曲率的半徑
考試要求:
1. 理解導數和微分的概念,理解導數和微分的關系,理解導數的幾何意義,會求平面曲線的切線方程和法線方程,了解導數的物理意義,會用導數描述一些物理量,理解函數的可導性與連續性之間的關系.
2. 掌握導數的四則運演算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運演算法則和一階微分形式的不變性,會求函數的微分
3. 了解高階導數的概念,會求簡單函數的高階導數
4. 會求分段函數的導數,會求隱函數和由參數方程所確定的函數以及反函數的導數
5. 理解並會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解並會用柯西( Cauchy )中值定理
6. 掌握用洛必達法剛求未定式極限的方法.
7. 理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.
8. 會用導數判斷函數圖形的凹凸性,會求函數圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數的圖形.
9. 了解曲率和曲率半徑的概念,會計算曲率和曲率半徑.
三、一元函數積分學
考試內容:原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數、三角函數的有理式和簡單無理函數的積分 反常(廣義)積分 定積分的應用
考試要求
1. 理解原函數的概念,理解不定積分和定積分的概念
2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質及定積分中值定理,掌握換元積分法與分部積分法
3. 會求有理函數、三角函數有理式和簡單無理函數的積分
4. 理解積分上限的函數,會求它的導數,掌握牛頓一萊布尼茨公式
5. 了解反常積分的概念,會計算反常積分
6. 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、引力、壓力、質心等)及函數的平均值
四、多元函數微積分學
考試內容:多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念 有界閉區域上二元連續函數的性質 多元函數的偏導數和全微分 多元復合函數、隱函數的求導法 二階偏導數 多元函數的極值和條件極值、最大值、最小值 二重積分的概念、基本性質和計算
考試要求:
1. 了解多元函數的概念,了解二元函數的幾何意義
2. 了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質
3. 了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,了解隱函數存在定理,會求多元隱函數的偏導數.
4. 了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,會求解一些簡單的應用題.
5. 了解二重積分的概念與基本性質,掌握二重積分(直角坐標、極坐標)的計算方法
五、常微分方程
考試內容:常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程 高於二階的某些常系數齊次線性微分方程 簡單的二階常系數非齊次線性微分方程 微分方程的簡單應用
考試要求
1. 了解微分方程及其階、解、通解、初始條件和特解等概念
2. 掌握變數可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程。
3. 會用降階法解下列形式的微分方程: , 和
4. 理解二階線性微分方程解的性質及解的結構定理.
5. 掌握二階常系數齊次線性微分方程的解法,並會解某些高於二階的常系數齊次線性微分方程.
6. 會解自由項為多項式、指數函數、正弦函數、餘弦函數以及它們的和與積的二階常系數非齊次線性微分方程.
7. 會用微分方程解決一些簡單的應用問題.
線性代數
一、行列式
考試內容:行列式的概念和基本性質 行列式按行(列)展開定理
考試要求:
1.了解行列式的概念,掌握行列式的性質
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
二、矩陣
考試內容:矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價
考試要求:
1. 理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質.
2. 掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3. 理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4. 了解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.
三、向量
考試內容:向量的概念 向量的線性組合和線性表示 向量組的線性相關和線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的的正交規范化方法
考試要求
1. 理解n維向量、向量的線性組合與線性表示的概念.
2. 理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法
3. 了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.
4. 了解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩的關系
5. 了解內積的概念,掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
四、線性方程組
考試內容:線性方程組的克萊姆(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 非齊次線性方程組的通解
考試要求:
1. 會用克萊姆法則
2. 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件
3. 理解齊次線性方程組的基礎解系及通解的概念,掌握齊次線性方程組基礎解系和通解的求法
4. 理解非齊次線性方程組解的結構及通解的概念.
5. 會用初等行變換求解線性方程組.
五、矩陣的特徵值和特徵向量
考試內容:矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值、特徵向量及其相似對角矩陣
考試要求:
1. 理解矩陣的特徵值和特徵向量的概念及牲質,會求矩陣的特徵值和特徵向量.
2. 理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣。
3. 理解實對稱矩陣的特徵值和特徵向量的性質.
六、二次型
考試內容:二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1. 了解二次型的概念,會用矩陣形式表示二次型,了解合同變換和合同矩陣的概念
2. 了解二次型秩的概念,了解二次型的標准型、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形
3. 理解正定二次型、正定矩陣的概念,並掌握其判別法
試卷結構
總分:150
內容比例:高等數學約78% 線形代數 約22%
題型比例:填空與選擇約45% 解答題(包括證明題)約55%
『柒』 關於天津大學研究生院
天津大學研究生院:http://tdyw.tju.e.cn/gs/default.htm
天津大學招生辦公室:http://gs.tju.e.cn/yzbpage/ssdg.aspx
下面是初試考有機化學考試大綱
天津大學碩士研究生入學考試業務課考試大綱
課程編號:718 課程名稱:有機化學
一、 考試的總體要求
"有機化學"入學考試是為招收化學類碩士生而實施的選拔性考試。其指導思想是有利於選拔具有扎實的有機基礎理論知識和具備一定實驗技能的高素質人才。要求考生能夠系統地掌握有機化學的基本知識和有機化學實驗的基本操作以及具備運用所學的知識分析問題和解決問題的能力。
二、 考試的內容及比例
1. 有機化合物的命名、順反及對映異構體命名、個別重要化合物的俗名和英文縮寫8~10%
2. 有機化合物的結構、共振雜化體及芳香性,同分異構與構象。4-6%
3. 誘導效應、共軛效應、超共軛效應、空間效應、小環張力效應、鄰基效應、氫鍵的概念及上述效應對化合物物理與化學性質的影響。4-6%
4. 主要官能團(烯鍵、炔鍵、鹵素、硝基、氨基、羥基、醚鍵、醛基、酮羰基、羧基、酯基、鹵甲醯基、氨甲醯基、氰基、磺酸基等)的化學性質及他們之間相互轉化的規律。
5. 烷烴、脂環烴、烯烴、炔烴、鹵代烴、醇、酚、醚、醛、酮、不飽和醛酮、羧酸、羧酸及其衍生物、羥基酸、羥基酸、丙二酸酯、β-丙酮酸酯、氨基酸、硝基化合物、胺、腈、偶氮化合物、磺酸、簡單雜環化合物、單糖、元素(Mg、Zn、Cu、Li)有機化合物等的制備、分離、鑒定、物理性質、化學性質及在合成上的應用。30-35%
6. 常見有機化合物的波譜(紅外)、核磁)
7. 飽和碳原子上的自由基取代,親核取代,芳環上的親電與親核取代,碳碳重鍵的親電、自由基及親核加成,消除反應,聚合反應,氧化反應(烷烴、烯烴、炔烴、醇、醛、芳烴側鏈的氧化脂環烴、烯炔臭氧化及Cannizzaro反應),還原反應(不飽和烴、芳烴、醛、酮、羧酸、羧酸衍生物、硝基化合物、腈的氫化還原及選擇性還原反應),縮合反應(羥醛縮合、Claisen縮合、Claisen-Schmidt縮合、Perkin縮合),降級反應(Hofmann降解,脫羧),重氮化反應,偶合反應,重排反應(Wagner-Meerwein重排、烯丙位重排、頻那醇重排、Beckmann重排、Hofmann重排)的歷程及在有機合成中的應用。20-25%
8. 碳正離子、碳負離子、自由基、苯炔的生成與穩定性及其有關反應的規律。能夠從中間體穩定性來判斷產物結構。6-8%
9. 有機化學實驗中的基本操作及基本合成實驗操作及產物的後處理。8-12%
三、考試的題型及比例
1. 化合物的命名或寫出結構式6-10%
2. 完成反應(由反應物、條件和產物之H寫出條件、產物或反應物之一)25-35%
3. 選擇填空(涉及中間體的穩定性、芳香性、芳環L親電取代反應定位規則、有機反應中的電子效應與空間效應、構象與構象分析、官能團的鑒定等)8-12%
4. 反應歷程:典型反應的歷程8-12%
5. 分離與鑒別6-8%
6. 推斷化合物的結構(給定化學反應、化學性質、紅外、核磁等條件)8-12%
7. 合成題:15-20%
8. 實驗題(有機化學實驗的基本操作的作用及應用條件,分析實驗中的問題及解決問題的方法)8-12%
四、考試形式及時間
"有機化學"考試形式為筆試。考試時間為3小時。
下面是考物理化學的考試大綱
天津大學碩士研究生入學考試業務課考試大綱
課程編號:839 課程名稱:物理化學(含物理化學實驗)
一、考試的總體要求
1. 對本門課程中重要的基本概念與基本原理掌握其含義及適用范圍;
2. 掌握物理化學公式應用及公式應用條件。計算題要求思路正確。步驟簡明;
3. 掌握物理化學實驗中常用物理量的測量(包括原理、計算式、如何測量)。能正確使用常用物化儀器(原理、測量精度、使用范圍、注意事項)
二、考試內容及比例 (重點部分)
1. 氣體、熱力學第一定律、熱力學第二定律 (~22 %)
理想氣體狀態方程、范德華方程、壓縮因子定義。
熱力學第一、第二定律及其數學表達式;pVT變化、相變化與化學反應過程中W、Q、 U、 H、 S、 A與 G的計算;熵增原理及三種平衡判據。
了解熱力學基本方程和麥克斯韋關系式的簡單應用;克拉貝龍方程及克-克方程的應用。
2. 多組分熱力學及相平衡 (~18 %)
偏摩爾量、化學勢的概念;理想氣體、理想稀溶液的化學勢表達式;逸度、活度的定義以及活度的計算。
拉烏爾定律和亨利定律;稀溶液依數性的概念及簡單應用。
相律的應用;單組分相圖;二組分氣-液及凝聚系統相圖。
3. 化學平衡 (~10 %)
等溫方程;標准摩爾反應Gibbs函數、標准平衡常數與平衡組成的計算;溫度、壓力和惰性氣體對平衡的影響;同時平衡的原則。
4. 電化學 (~10 %)
電解質溶液中電導率、摩爾電導率、活度與活度系數的計算;電導測定的應用。
原電池電動勢與熱力學函數的關系,Nernst方程;電動勢測定的應用;電極的極化與超電勢的概念。
5. 統計熱力學 (~6 %)
Boltzmann分布;粒子配分函數的定義式;雙原子平、轉、振配分函數的計算;獨立子系統能量、熵與配分函數的關系,Boltzmann熵定理。
6. 化學動力學 (~15 %)
反應速率、基元反應、反應分子數、反應級數的概念。
零、一、二級反應的動力學特徵及速率方程積分式的應用;阿累尼烏斯公式;對行、平行反應(一級)速率方程積分式的應用;復雜反應的近似處理法(穩態近似法、平衡態近似法)。
催化作用的基本特徵;光化反應的特徵及光化學第一、第二定律。
7. 界面現象與膠體化學(~10 %)
彎曲液面的附加壓力與Laplace方程;Kelvin方程與四種亞穩態;潤濕與鋪展現象及楊氏方程;化學吸附與物理吸附;Langmuir吸附等溫式。
了解膠體的光學性質、動力性質及電學性質;掌握膠團結構的表示,電解質對溶膠的聚沉作用;了解乳狀液的穩定與破壞。
8. 實驗部分(~10 %)
1) 恆溫槽的調節及粘度測定;2)液體飽和蒸氣壓的測定;3)反應焓的測定;4)平衡常數的測定(ZnO與HCl水溶液反應);5)凝固點降低法測摩爾質量(萘-苯系統);6)二元完全互溶液體蒸餾曲線(乙醇-正丙醇系統,阿貝折射儀);7)二元凝聚系統相圖;8) 原電池熱力學(電位差計的應用);9)過氧化氫催化分解(KI催化劑);10)乙酸乙酯皂化反應(電導儀的應用);11)表面張力的測定(氣泡最大壓力法),以上實驗的原理及物理量的測量方法
三、試卷題型及比例
計算題60%,概念題30%,實驗題10%。
四、考試形式及時間
考試形式均為筆試。考試時間為3小時。
『捌』 天津大學應用化學專業考研分享
我是20年參加碩士研究生入學考試的,報考的是天津大學應用化學專業。

考研沒有捷徑,我們能做的也只是告訴你我們的復習經驗方法,具體你要結合自己學習情況規劃自己的每一階段學習目標。最後送給大家一段話,「考研就像在黑屋子裡洗衣服,你不知道洗干凈了沒有,只能一遍一遍去洗。等上了考場的那一刻,燈亮了,你發現有的人忘了加洗衣粉,有的人用的是洗衣機。但只要你認真洗過了每一個地方,那件衣服一定是光亮如新的,而你以後每次穿這件衣服時都會想起這段歲月。」
一段段經歷,波瀾壯闊,激勵著我們;一種種精神,穿越時空,輝映著未來。
成功者的風采已在學子心中長留。這,就是我們的優秀校友。一次次的解讀,一次次的冥想;這是怎樣的一種追求呢?這種銳意進取的姿態折射出了我院寬容博大的精神特質和獨特的文化魅力;激勵著我們年輕的學子富於夢想、開拓創新;引導著我們用心去欣賞師院的每一個回盪的聲音。
為了活得精彩,必須擁有知識和技能。知識是成功的基礎,技能是實現成功的工具。人類步入二十一世紀,世界多極化,信息全球化,知識信息量在以百倍的速度遞增。面對這樣的現實,昔日象牙塔里輕松自在的場景早已不見,取而代之的是尋找精彩的一雙雙熾熱的目光。社會將競爭的殘酷帶到了的身邊,從而也造就了新一代青年的自強和向上。有一句話說"機遇留給有所准備的人",那麼,年青的朋友們,讓早早准備。
