當前位置:首頁 » 招生排名 » 拓撲學中國大學排名

拓撲學中國大學排名

發布時間: 2021-02-17 17:38:59

⑴ 南開大學是國內數學專業排名

應該是前十名以內,具體要查一下了!

⑵ 世界上數學拓撲最好的大學有哪些

2015年美國大學拓撲學專業排名

  • 加州大學伯克利分校

  • 2HarvardUniversity哈佛大學

  • 3PrincetonUniversity普林斯頓大學

  • 麻省理工學院

  • 5StanfordUniversity斯坦福大學

  • 6TheUniversityofChicago芝加哥大學

  • 7ColumbiaUniversity哥倫比亞大學
    8TheUniversityofTexasatAustin德克薩斯大學奧斯汀分校

  • 9UniversityofMichiganAnnArbor密西根大學-安娜堡分校

  • 10CornellUniversity康乃爾大學

  • 11YaleUniversity耶魯大學

  • 12StonyBrookUniversity--SUNY
    13UniversityofCaliforniaDavis加州大學戴維斯分校

  • 加州大學洛杉機分校

  • 15BrownUniversity布朗大學
    加州理工學院

⑶ 拓撲學是個什麼樣的學科

拓撲學,是近代發展起來的一個研究連續性現象的數學分支。中文名稱起源於希臘語Τοπολογία的音譯。Topology原意為地貌,於19世紀中期由科學家引入,當時主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。

分支學科
點集拓撲學又稱為一般拓撲學
組合拓撲學
代數拓撲學
微分拓撲學
幾何拓撲學

拓撲學

拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。在拓撲學的孕育階段,19世紀末,就拓撲已出現點集拓撲學與組合拓撲學兩個方向。現在,前者演化為一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓樸學、幾何拓撲學等分支。

在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。

哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。

1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。

在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。

根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。

著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。

四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」

1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。

進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。

上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。

什麼是拓撲學?

拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。

拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。

舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。

拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。

在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。

在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。

應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。

直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。

我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。

拓撲變換的不變性、不變數還有很多,這里不在介紹。

拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。

二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。

因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。

拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。

拓撲學起初叫形勢分析學,這是G.W.萊布尼茨1679年提出的名詞。拓撲學這個詞(中文是音譯)是J.B.利斯廷1847年提出的,源自希臘文位置、形勢與學問。

1851年起,B.黎曼在復變函數的研究中提出,為了研究函數、研究積分,就必須研究形勢分析學。從此開始了拓撲學的系統研究。

組合拓撲學的奠基人是H.龐加萊。他是在分析學和力學的工作中,特別是關於復函數的單值化和關於微分方程決定的曲線的研究中,引向拓撲學問題。他探討了三維流形的拓撲分類問題,提出了著名的龐加萊猜想。

拓撲學的另一淵源是分析學的嚴密化。實數的嚴格定義推動了G.康托爾從1873年起系統地展開了歐氏空間中的點集的研究,得出許多拓撲概念。如:聚點、開集、連通性等。在點集論的思想影響下,分析學中出現了泛函數(即函數的函數)的概念。把函數集看成一種幾何對象並討論其中的極限,這終於導致了抽象空間的觀念。

拓撲問題的一些初等例子:

柯尼斯堡七橋問題(一筆劃問題)。一個散步者怎樣才能走遍七座橋而每座橋只經過一次?這個18世紀的智力游戲,被L.歐拉簡化為用細線畫出的網路能否一筆劃出的問題,然後他證明了這是根本辦不到的。一個網路能否被一筆畫出,與線條的長短曲直無關,只決定於其中的點與線的連接方式。設想一個網路是用柔軟而有彈性的材料製作的,在它被彎曲、拉伸後,能否一筆畫出的性質是不會改變的。

歐拉的多面體公式與曲面的分類。歐拉發現,不論什麼形狀的凸多面體,其頂點數 、棱數 、面數 之間總有 這個關系。由此可證明正多面體只有五種。如果多面體不是凸的而呈框形(圖33),則不管框的形狀如何,總有 。這說明,凸形與框形之間有比長短曲直更本質的差別,通俗地說,框形里有個洞。

在連續變形下,凸體的表面可以變成球面,框的表面可以變成環面(輪胎面)。這兩者都不能通過連續變形互變(圖34)。在連續變形下封門曲面有多少種不同類型?怎樣鑒別他們?這曾是19世紀後半葉拓撲學研究的主要問題。

紐結問題。空間中一條自身不相交的封閉曲線,會發生打結現象。要問一個結能否解開(即能否變形成平放的圓圈),或者問兩個結能否互變(如圖35中兩個三葉結能否互變)。同時給出嚴格證明,那遠不是件容易的事了。

布線問題(嵌入問題)。一個復雜的網路能否布在平面上而又不自相交叉?做印製電路時自然會碰到這個問題。圖36左面的圖,把一條對角線移到方形外面就可以布在平面上。但圖37中兩個圖卻無論怎樣移動都不能布在平面上。1930年K•庫拉托夫斯基證明,一個網路是否能嵌入平面,就看其中是否不含有這兩個圖之一。

以上這些例子說明,幾何圖形還有一些不能用傳統的幾何方法來研究的性質。這些性質與長度、角度無關,它們所表現的是圖形整體結構方面的特徵。這種性質就是圖形的所謂拓撲性質。

拓撲學的由來

幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。

在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。

哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。

1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。

在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。

根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。

著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。

四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」

1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。

進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。

上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。、

⑷ 誰創立了拓撲學 19、20世紀之交。。。

疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。 在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。 哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,哥尼斯堡七橋問題示意圖普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。 1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,化簡後用點、線表示七橋問題中路、橋的示意圖他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。 在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。僅有的五種正多面體 根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。 著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。 四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」 1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。 進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。 上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。 什麼是拓撲學? 拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。 拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。 舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。 拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。 在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。 在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。 應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。 直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。 我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。 拓撲變換的不變性、不變數還有很多,這里不在介紹。 拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。 二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。 因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945 年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。 拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。 拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。 其它數學分支學科 算術、初等代數、高等代數、數論、歐式幾何、非歐幾何、解析幾何、微分幾何、代數幾何學、射影幾何學、拓撲學、分形幾何、微積分學、實變函數論、概率和數理統計、復變函數論、泛函分析、偏微分方程、常微分方程、數理邏輯、模糊數學、運籌學、計算數學、突變理論、數學物理學

⑸ 讓人聞風喪膽的十門大學課程都是什麼

高中時候的我們嚮往大學的課程,不僅少還輕松,但小編今天就來給你們普及一下大學的十門噩夢科目,以免你不幸踩坑。

一、葯理學

屬於葯學類的課程。這門學好的秘訣就一個字,背!有人說,這不是很簡單么,我記憶超強,小意思。大錯特錯!傳說中,學這門課程必須要背完上百萬字的課本,而且你必須背的特別詳細,否則,考試可能考的就是你沒看的那幾個字!

二、音韻學

屬於中國語言文學類專業的課程。最難的就是學古人說話,聽古語。當你聽了一遍古語版的《離騷》之後,你可能當場斷了你那附庸風雅的心!

三、固體物理

屬於物理學專業的一門重要課程。課程從原創的科學家的思想出發,介紹固體物理學中主要的概念、實驗和理論。材料類都得學,傳說中清華材料學院的神課,考試平均分不超過體溫!

十、編譯原理

屬於計算機專業,旨在介紹編譯程序構造一般原理和基本方法。碼農非常怕的一門課,不僅抽象,而且枯燥,但你又必須細心的研究!

同學們一定要好好學習,爭取不掛科!

⑹ 什麼是拓撲學,它到底是一個什麼知識領域,誰能給概括一下

拓撲學
拓撲學,是近代發展起來的一個研究連續性現象的數學分支。中文名稱起源於希臘語Τοπολογ的音譯。Topology原意為地貌,於19世紀中期由科學家引入,當時主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。 拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。
學科方向
由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。19世紀末,在拓撲學的孕育階段,就已出現點集拓撲學與組合拓撲學兩個方向。現在,前者演化為一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓樸學、幾何拓撲學等分支。 拓撲學也是數學的一個分支,研究幾何圖形在連續改變形狀時還能保持不變的一些特性,它只考慮物體間的位置關系而不考慮它們的距離和大小。[英topology] 舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,下面將要講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。 簡單地說,拓撲就是研究有形的物體在連續變換下,怎樣還能保持性質不變。
編輯本段拓撲學的由來
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。 在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。 哥尼斯堡七橋問題
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個看起來很簡單又很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。 1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。 在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。 根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。 著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。中國曾邦哲於20世紀80-90年代(結構論)將其命題轉換為「四色定理」等價於「互鄰面最大的多面體是四面體」的問題。 拓撲學
四色猜想的提出來自於英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」 1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。 進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取

⑺ 什麼是拓撲學

拓撲學是數學中一個重要的、基礎性的分支。它最初是幾何學的一個分支,主要研究幾何圖形在連續變形下保持不變的性質,現在已成為研究連續性現象的重要的數學分支。

拓撲學起初叫形勢分析學,是萊布尼茨1679年提出的名詞。十九世紀中期,黎曼在復函數的研究中強調研究函數和積分就必須研究形勢分析學。從此開始了現代拓撲學的系統研究。

連續性和離散性是自然界與社會現象中普遍存在的。拓撲學對連續性數學是帶有根本意義的,對於離散性數學也起著巨大的推動作用。拓撲學的基本內容已經成為現代數學的常識。拓撲學的概念和方法在物理學、生物學、化學等學科中都有直接、廣泛的應用。
拓撲學的由來

幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。
上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。
什麼是拓撲學?
拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。
拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。
舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。
拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。
在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。
在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。
應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。
直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這里不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。
拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。
拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。

⑻ 19,20s世紀之交,是誰創立了拓撲學

19、20世紀之交,龐加萊創立了拓撲學,開辟了對連續現象進行定性與整體研回究的途徑答。拓撲學(tuò pū xué)(topology)是近代發展起來的一個數學分支,用來研究各種「空間」在連續性的變化下不變的性質。在20世紀,拓撲學發展成為數學中一個非常重要的領域。Topology原意為地貌,起源於希臘語Τοπολογ。形式上講,拓撲學主要研究「拓撲空間」在「連續變換」下保持不變的性質。簡單的說,拓撲學是研究連續性和連通性的一個數學分支。拓撲學起初叫形勢分析學,是德國數學家萊布尼茨1679年提出的名詞。十九世紀中期,德國數學家黎曼在復變函數的研究中強調研究函數和積分就必須研究形勢分析學。從此開始了現代拓撲學的系統研究。

⑼ 什麼是拓撲學

拓撲學
拓撲學,是近代發展起來的一個研究連續性現象的數學分支。中文名稱起源於希臘語Τοπολογ的音譯。Topology原意為地貌,於19世紀中期由科學家引入,當時主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。 拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。

學科方向
由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。19世紀末,在拓撲學的孕育階段,就已出現點集拓撲學與組合拓撲學兩個方向。現在,前者演化為一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓樸學、幾何拓撲學等分支。 拓撲學也是數學的一個分支,研究幾何圖形在連續改變形狀時還能保持不變的一些特性,它只考慮物體間的位置關系而不考慮它們的距離和大小。[英topology] 舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,下面將要講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。 簡單地說,拓撲就是研究有形的物體在連續變換下,怎樣還能保持性質不變。

拓撲學由來
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。 在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。 哥尼斯堡七橋問題
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個看起來很簡單又很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。 1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。 在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。 根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。 著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。中國曾邦哲於20世紀80-90年代(結構論)將其命題轉換為「四色定理」等價於「互鄰面最大的多面體是四面體」的問題。 拓撲學
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」 1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。 進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。 上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。拓撲學是數學中一個重要的、基礎性的分支。它最初是幾何學的一個分支,主要研究幾何圖形在連續變形下保持不變的性質,現在已成為研究連續性現象的重要的數學分支。 拓撲學起初叫形勢分析學,是萊布尼茨1679年提出的名詞。十九世紀中期,黎曼在復函數的研究中強調研究函數和積分就必須研究形勢分析學。從此開始了現代拓撲學的系統研究。 連續性和離散性是自然界與社會現象中普遍存在的。拓撲學對連續性數學是帶有根本意義的,對於離散性數學也起著巨大的推動作用。拓撲學的基本內容已經成為現代數學的常識。拓撲學的概念和方法在物理學、生物學、化學等學科中都有直接、廣泛的應用。 拓撲學是幾何學的一個分支,它是從圖論演變過來的。拓撲學將實體抽象成與其大小、形狀無關的點,將連接實體的線路抽象成線,進而研究點、線、面之間的關系。網路拓撲通過結點與通信線路之間的幾何關系來表示網路結構,反映出網路中各個實體之間的結構關系。拓撲設計是建設計算機網路的第一步,也是實現各種網路協議的基礎,它對網路性能、可靠性與通信代價有很大影響。網路拓撲主要是指通信子網的拓撲構型。

⑽ 有哪些值得推薦的拓撲學入門資料

世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。

進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。

上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。

什麼是拓撲學?

拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。

拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。

舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。

拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。

在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。

在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。

應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。

直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。

我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。

拓撲變換的不變性、不變數還有很多,這里不在介紹。

拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。

二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。

因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。

拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。

拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。

其它數學分支學科

算術、初等代數、高等代數、數論、歐式幾何、非歐幾何、解析幾何、微分幾何、代數幾何學、射影幾何學、拓撲學、分形幾何、微積分學、實變函數論、概率和數理統計、復變函數論、泛函分析、偏微分方程、常微分方程、數理邏輯、模糊數學、運籌學、計算數學、突變理論、數學物理學

熱點內容
四川農業大學申請考核博士 發布:2025-10-20 08:58:11 瀏覽:981
福田雷沃重工本科生待遇怎麼樣 發布:2025-10-20 08:53:49 瀏覽:575
華為要本科生嗎 發布:2025-10-20 08:25:41 瀏覽:550
2008年青島本科生工資 發布:2025-10-20 08:04:24 瀏覽:444
東北大學藝術考研 發布:2025-10-20 07:38:35 瀏覽:299
我的大學生活txt 發布:2025-10-20 07:35:28 瀏覽:25
人民大學外語系考研 發布:2025-10-20 07:31:12 瀏覽:894
上海交通大學考研輔導班 發布:2025-10-20 07:24:54 瀏覽:420
華中農業大學細胞生物學考研群 發布:2025-10-20 07:09:36 瀏覽:558
南京大學2016考研線 發布:2025-10-20 06:43:12 瀏覽:930