大学物理实验惯性秤根据所用周期测试仪的时间测量的分辨率
⑴ 分辨率测试卡怎么用
我前几天好像回答过关于分辨率测试卡怎么用的问题,这是一张ISO12233:2000标准的分辨率测试卡,目前已被ISO12233:2014eSFR分辨率测试卡所取代,但是目前使用ISO12233:2000标准的分辨率测试卡还是比较多。
类型
反射式:由前面照明的反射式测试标板
透射式:可由后面照明的透射标板
尺寸
标板影像宽高比可选择16:9、3:2、4:3和1:1,在测试摄像头模组的分辨率时,一般都选取4:3区域。
单位
用像高每线宽来表示,标记为LW/PH。
ISO12233分辨率测试卡使用方法
ISO12233分辨率测试卡包含了3种分辨率测试方式:
SFR测试 (图中绿色框1)
MTF测试(频率线测试 图中红色框2)
TVLine测试(楔形线测试 图中蓝色框3)
测试单元
主要使用其中的水平方向的J1、K1;垂直方向的J2、K2;倾斜45 度方向的JD、KD 样式,另外还有四角的十字区域。
各测试单元的测试内容
J1、K1:用于测量中心的水平可视分辨率,拥有100~2000LW/PH的测试范围;
J2、K2:用于测量中心的垂直可视分辨率,拥有100~2000LW/PH的测试范围;
JD、KD:用于测量斜45度的可视分辨率,拥有100~1000LW/PH的测试范围;
四角十字型测试单元:用于测量四角的水平和垂直可视分辨率,拥有100~1000LW/PH的测试范围。
这张看似标准的ISO 12233分辨率测试卡将不再作为分辨率测试的标准卡,它早已不适应当今的分辨率测试,现在我们去ISO网站搜索,甚至已经搜索不到ISO 12233:2000,取而代之的,是ISO 12233:2014,目前国内的分辨率测试卡生产厂家赛麦吉可以按照新标准制作ISO12233:2014eSFR分辨率测试卡。
⑵ 怎样测量惯性秤的周期,测量时应注意哪些问题
1、选择细、轻又不易伸长且长度一般在1m左右的先做摆线,测摆线时要悬挂着测量;回小球选用答直径较小、密度较大的金属球。
2、单摆悬线的上端不可以随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆球摆动是发生摆线下滑、摆长改变的现象。
3、最大摆角小于10°,可以通过振幅控制。
4、摆球要在同一竖直面内摆动,不易形成圆锥摆。
5、计算摆球的主动次数时,应以摆球通过最低点时开始计时,切记不要算错次数。
(2)大学物理实验惯性秤根据所用周期测试仪的时间测量的分辨率扩展阅读:
1.惯性秤之所以能比较物体惯性质量的大小,是由于它在运动过程中,对振动加速度做贡献的仅是秤臂的弹性力,故秤台一定要严格地保持在水平方向运动,避免重力对运动的影响。
2.在秤台上放置砝码或待测物时,砝码或待测物的重心应位于通过秤台圆孔中心的垂直线上,以保证每次测量时有一固定不变的臂长。
3.秤台振动时,摆角应尽量小些(5°以内),以保证振动为简谐运动,从而才能保证振动的等时性。
4.惯性秤的灵敏度,即分辨微小质量差异的能力,与秤臂的倔强系数k和秤台的质量m0有关。要提高它的灵敏度应该减小m0和k值,且待测物的质量不宜过大。
⑶ 重力对惯性秤摆动周期的有什么影响
转子转动惯量的大小对电机的起动和制动性能有着直接影响,必要时应该进行实测。转子转动惯量的大小,国家标准中没有具体规定,一般由用户按照实际需求与制造厂协定。
转动惯量用符号J来表示,单位kg.m2,是我国和国际标准中的标准物理量。但在工程中,习惯采用GD2来表示。
转子转动惯量的确定方法有计算法和实测法两种。实测法又有单钢丝法、双钢丝法、辅助摆摆动法和惯性回转法等。今天Ms.参简要分析如何用计算法和单钢丝法测定转子转动惯量方法,其它方法类似,诸位可以借此类比、推导、演绎。
计算法测定转子转动惯量
虽然电机转子是一个接近规整的圆柱体,但因其至少有3种不同的材料制成,并且相互交叉,所以较难进行准确的计算。在要求不高时,可将转子看成一个密度均匀的圆柱体,在秤其质量m后,用计算圆柱体转动惯量的公式(2)进行计算求得。
式(2)中:
J—转动惯量(kg·m2);
m-—转子质量(kg);
r——转子半径(m)。
单钢丝转子转动惯量
单钢丝实测法又分两种不同的方法,即用假转子辅助的单钢丝实测法和附加辅助扭转摆的单钢丝实测法。
假转子辅助的单钢丝实测法:
此方法适用于转子质量不超过50kg的小型电机。由于需制作一个假转子,所以成本较高,试验也较费时。
● 假转子制作要求
(1)材料密度均匀,最好采用轧制圆钢。
(2)外圆圆整,端面平整。
(3)尽量使其质量及形状与被试转子相同。
制作完成后,精确测量出它的外形尺寸,并用式(2)计算出它的转动惯量Ja(kg·m2)。
● 测试步骤
(1)将假转子可靠地悬挂在钢丝下。钢丝的另一端牢固地系于一个支架上。应注意钢丝必须系在假转子的直径中心,使其自然下垂时轴线竖直。钢丝长度在2m左右,其截面直径视假转子质量而定,即当假转子悬挂后应不使其有明显的伸长变形,但又不能太粗,否则会影响测试摆动及钢丝本身不直而引起较大误差。
(2)试验时,将假转子旋转30°-45°,然后松手,让其靠钢丝的扭力来回自由旋转。用秒表记录假转子旋转一个周期所用的时间(由原静止位置想到左边最大角度后,返回到原静止位置,然后提到右边最大角度位置后返回到原静止位置,为一个摆动周期。)。为了计时正确,第1-2个周期不计时,然后记录几个周期的时间,取其平均值作为假转子一个旋转周期所用的时间Ta(s)。计时起点和终点应在摆动速度最大的位置,即摆动中心位置。
(3)用已调好动平衡的被试转子换下上述假转子,用同样的方法求出被测试真转子的摆动周期T(s)。
(4)用式(3)计算求出被试转子的转动惯量)(kg·m2)。
⑷ 大学物理实验,扭摆发测转动惯量,摆动脚大小是否影响摆动周期
不影响,摆动的周期公式中与摆角没有关系.任一点的沿速度方向的分力,G2=mgsina,在a<5*时,sina=X/L,回复力F=-mgX/L,单摆做简谐振动。振动周期公式T=2π(L/g)^1/2,跟振动角度无关。
⑸ 惯性秤灵敏度与哪些因素有关
惯性秤的灵敏度,即分辨微小质量差异的能力,与秤臂的倔强系数k和秤台的质量m0有关。专要提属高它的灵敏度应该减小m0和k值,且待测物的质量不宜过大。
灵敏度(Sensitivity)是指某方法对单位浓度或单位量待测物质变化所致的响应量变化程度,它可以用仪器的响应量或其他指示量与对应的待测物质的浓度或量之比来描述。
灵敏度指示器的相对于被测量变化的位移率,灵敏度是衡量物理仪器的一个标志,特别是电学仪器注重仪器灵敏度的提高。通过灵敏度的研究可加深对仪表的构造和原理的理解。
⑹ 根据式,分析惯性秤的测量灵敏度,即和哪些因素有关
由图表可知,在误差允许范围内,所测数据绘制出的图表线性相关 R2=0.9994,基本符 4 π 2 ?m 0 ? m ? 合T ? ,误差原专因是与钢带振动属幅度有关;存在空气阻力。 k 2 思考题: 1.说明惯性秤的特点 惯性秤称量质量的最大特点是用振动法来测定物体惯性质量的装置; 称量时秤台一定要 严格地保持在水平方向运动,避免重力对运动的影响;所称物体的质量不宜过大。 2. 能否设想出其他的测量惯性质量的方案 在物体处于特定存在状态的时候, 如果要改变这种存在状态, 那么必然要对这个物体施 加作用力,根据牛顿第二运动定律,我们可以得到,在物体所受到的作用力不变的情况下, 物体的质量同加速度成反比。 我们只要测定了作用力的大小和物体加速度的大小, 那么就可 以确定物体的惯性质量。 dT 4 π 2 ?m 0 ? m ? 3. 根据 T ? ,分析惯性秤的测量灵敏度,即 和那些因素有关?根据所 dm k 2 2 用周期测试仪的时间测量的分辨率, 此惯性秤所能达到的质量灵敏度是多少 (不考虑其他误 差) 。 秤臂的倔强系数 k 和秤台的质量有关,所能达到的灵敏度为 0.01。
⑺ 谁能给下固体导热系数的测量实验的步骤啊
【实验目的】
1.用稳态法测定不良导热体橡胶的热导率,并与公认值进行比较;
2.初步学习用热电偶进行温度测量。
【实验原理】
测量热导率的方法比较多,可以归并为两类基本方法:一类是稳态法;另一类为动态法。用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分布,然后进行测量;而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。本实验采用稳态法进行测量。
根据傅立叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h、温度分别为T1和T2(设T1 >T2 )的平行平面,若平面面积均为ΔS,则在Δt时间内通过面积ΔS的热量ΔQ满足下述表达式: (13-1)
式中 即为该物质的热导率,也称导热系数。由此可知,热导率是一个表示物质热传导性能的物理量,其数值等于两相距单位长度的平行平面上、当温度相差一个单位时、在单位时间内垂直通过单位面积所流过的热量,其单位为W/mK。材料的结构变化与杂质多寡对热导率都有明显的影响;同时,热导率一般随温度而变化,所以,实验时对材料成份、温度等都要一并记录。
我们这里使用的TC-3型热导率测定仪,就是采用稳态法测量不良导体、金属、空气等多种材料热导率的一体化实验仪器,由五大部分组成(具体结构如图13-1所示):
(1)加热源:电热管加热铜板;
(2)测试样品支架:支架、样品板,散热铜板、风扇;
(3)测温部分:热电偶,数字式毫伏表,杜瓦瓶;
(4)数字计时装置:计时范围166分钟,分辨率0.1秒;
(5)PID自动温度控制装置:控制精度 ,分辨率 。
在支架上先放上圆铜盘B,在B的上面放上待测样品C(圆盘形的不良导体),再把带发热器的圆铜盘A放在C上。发热器通电后,热量从A盘传到C盘,再传到B盘,由于A、B盘都是良导体,其温度即可以代表C盘上、下表面的温度T1和T2,T1 、T2分别由插入A、B盘边缘小孔的热电偶I来测量,热电偶的冷端则浸在杜瓦瓶G中的冰水混合物中,通过传感器切换开关KI切换A、B盘中的热电偶II、III与数字电压表F的连接回路。由式(13-1)可以知道,单位时间内通过待测样品C任一圆截面的热流量 为
(13-2)
式中Rc为样品的半径,hc为样品的厚度。当热传导达到稳定状态时,T1和T2的值不变, 于是通过样品盘C上表面的热流量与由散热铜盘B向周围环境散热的速率相等,因此,可通过铜盘B在稳定温度T2 时的散热速率来求出热流量 。实验中,在读得稳定时的T1、T2后,即可将C盘移去,而使盘A的底面与铜盘B直接接触。当盘B的温度上升到高于稳定时的值T2若干摄氏度或(0.2mV)后,再将圆盘A移开,让铜盘B自然冷却。观察其温度T2随时间t变化情况,然后由此求出铜盘B在T2 的冷却速率 ,而
(mB为紫铜盘B的质量,c为铜材的比热容),就是紫铜盘B在温度为T2 时的散热速率。但要注意:这样求出的 是紫铜盘的全部表面暴露于空气中的冷却速率,其散热表面积为 (其中RB与hB分别为紫铜盘B的半径与厚度)。然而,在观察测试样品C的稳态传热时,B盘的上表面(面积为 )是被样品覆盖着的。考虑到物体的冷却速率与它的表面积成正比,则稳态时铜盘B散热速率的表达式应作如下修正:
(13-3)
将式(13-3)代入式(13-2),得
(13-4)
【实验仪器】
TC-3型热导率测定仪,橡胶样品, TW-1型物理天平,游标卡尺,冰水,硅油。
使用注意:
(1)使用前将加热铜板A与散热铜板B擦干净,样品两端面擦干净后,可涂上少量硅油,以保证接触良好。
(2)实验过程中,如需触及电热板,应先关闭电源,以免烫伤。
(3)实验结束后,应切断电源,妥为放置测量样品,不要使样品两端面划伤而影响实验的正确性。
【实验内容】
在测量热导率前应先对散热盘B和待测样品盘C的直径、厚度进行测量。
1、用游标卡尺测量待测样品盘C直径和厚度,各测1次。
2、用游标卡尺测量散热盘B的直径和厚度,各测1次,计算B盘的质量,也可直接用天平称出B盘的质量。
一、不良导体热导率的测量
1.把橡胶盘C放入加热盘A和散热盘B之间,用三个螺旋头E夹紧(拧去固定轴H不用)。
2.在杜瓦瓶G中放入冰水混合物,将两热电偶I的冷端(两条黑线)插入杜瓦瓶中,热电偶的热端(两条红线)分别插入加热盘A和散热盘B侧面的小孔中,并将其温差电动势输出的插头分别插到仪器面板的传感器插座II和III上,如图13-2所示。
注意:
(1)园筒发热体盘A侧面和散热盘B的侧面,都有供安插热电偶I的小孔,安放发热盘A时此两小孔都应与杜瓦瓶在同一侧,以免路线错乱。热电偶插入小孔时,要抹上一些硅油,并插到洞孔底部,保证接触良好,热电偶冷端插入浸于冰水中的细玻璃管内,玻璃管内也要灌入适当的硅油。
(2)本实验选用铜-康铜热电偶,温差100℃时,温差电动势约4.2mV。
3.测量稳态时温度T1和T2的数值。接通电源,打开电扇开关KB(使散热盘有效、稳定地散热),将“温度控制PID”仪表上设置加温的上限温度( ),加热器开关KA打到高热(Ⅲ)档,当传感器II的温度T1约为4mV左右时,再将加热开关KA置于“Ⅱ”或“Ⅰ”档,降低加热电压。使加热盘A和散热盘B逐步达到稳定的温度分布(约需40分钟时间)。当达到稳态时,每隔3分钟记录VT1和VT2的值。
注意:当达到稳态时,VT1和VT2的数值在10分钟内的变化小于0.03毫伏,或VT2的数值在10分钟内不变即可认为已达到稳定状态,约需40分钟时间。
说明:对一般热电偶来说,温度变化范围不太大时,其温差电动势mV值与待测温度值的比是一个常数,因此,在用公式(13-4)计算热导率时,可以直接用温差电动势值取代温度值。
4.测量散热盘B在温度稳态值T2附近的散热速率 。移开圆盘A,取下橡胶盘C,并使圆盘A的底面与铜盘B直接接触,当盘B的温度上升到高于稳定态的值T2若干度(0.2mV左右)后,关掉加热器开关KA(电扇仍处于工作状态),将A盘移开(注意:此时橡胶盘C不再放上),让铜盘B自然冷却,记录T2共约6~8次,每隔30秒一次(注意:记录的数据必须保证温度稳态值T2在其测量范围以内)。
5.关掉电扇开关KB和电源开关KF。
二、金属热导率的测量(选做)
1、将圆柱体金属铝棒(厂家提供)置于发热圆盘与散热圆盘之间。
2、在杜瓦瓶G中放入冰水混合物,将两热电偶I的冷端(两条黑线)插入杜瓦瓶中,热电偶的热端(两条红线)分别插入分别插入金属圆柱体上的上下两孔中,并将其温差电动势输出的插头分别插到仪器面板的传感器插座II和III上。
3、当发热盘与散热盘达到稳定的温度分布后,T1、T2值为金属样品上下两个面的温度,此时散热盘B的温度为T2值。因此测量B盘的冷却速度为:
由此得到热导率为
4、测量散热盘B在温度稳态值T2附近的散热速率 。移开圆盘A,取下金属圆柱体C,并使圆盘A的底面与铜盘B直接接触,当盘B的温度上升到高于金属圆柱体上的下表面的稳定态值T2若干度(0.2mV左右)后,关掉加热器开关KA(电扇仍处于工作状态),将A盘移开(注意:此时金属圆柱体C不再放上),让铜盘B自然冷却,记录T2共约6~8次,每隔30秒一次(注意:记录的数据必须保证温度稳态值T2在其测量范围以内)。
三、空气热导率的测量(选做)
当测量空气的热导率时,通过调节三个螺旋头,使发热圆盘与散热圆盘的距离为h,并用塞尺进行测量(即塞尺的厚度),此距离即为待测空气层的厚度。注意:由于存在空气对流,所以此距离不宜过大。
【数据处理】
1.基本数据
铜的比热容c = 385.06J/(Kg·K)
室温t = ± ℃,
(1)散热盘B
直径2RB = ± mm, 半径RB = ± mm,
厚度 hB = ± mm, 质量mB= ± g
(2)橡胶盘C
直径2RC = ± mm, 半径RC = ± mm,
厚度 hC= ± mm
2.实验数据
(1)稳态时T1、T2的数据(每隔3分钟记录)
i
1
2
3
4
5
平均
T1(mV)
T2(mV)
(2)散热速率
t(s)
0
30
60
90
120
150
180
(mV/s)
T2(mV)
3.根据实验结果,计算出不良导热体的热导率 。[硅橡胶的热导率由于材料的特性不同,范围为0.072W/(m·K)~0.165W/(m·K),本实验给出的硅橡胶热导率在285K (12℃)左右时为 =0.165W/(m·K),铝合金热导率的理论参考值为130~150 W/(m·K)]求出百分差。
附录 铜—康铜热电偶分度表
温度
(℃)
热电势(mV)
0
1
2
3
4
5
6
7
8
9
0
0.000
0.039
0.078
0.117
0.156
0.195.
0.234
0.273
0.312
0.351
10
0.391
0.430
0.470
0.510
0.549
0.589
0.629
0.669
0.709
0.749
20
0.789
0.830
0.870
0.911
0.951
0.992
1.032
1.073
1.114
1.155
30
1.196
1.237
1.279
1.320
1.361
1.403
1.444
1.486
1.528
1.569
40
1.611
1.653
1.695
1.738
1.780
1.882
1.865
1.907
1.950
1.992
50
2.035
2.078
2.121
2.164
2.207
2.250
2.294
2.337
2.380
2.424
60
2.467
2.511
2.555
2.599
2.643
2.687
2.731
2.775
2.819
2.864
70
2.908
2.953
2.997
3.042
3.087
30131
3.176
3.221
3.266
2.312
80
3.357
3.402
3.447
3.493
3.538
3.584
3.630
3.676
3.721
3.767
90
3.813
3.859
3.906
3.952
3.998
4.044
4.091
4.137
4.184
4.231
100
4.277
4.324
4.371
4.418
4.465
4.512
4.559
4.607
4.654
4.701
110
4.749
4.796
4.844
4.891
4.939
4.987
5.035
5.083
5.131
5.179
【思考题】
(1)散热盘下方的轴流式风机起什么作用?若它不工作时实验能否进行?
(2)本实验对环境条件有些什么要求?室温对实验结果有没有影响?
(3)试定量估计用温差电动势代替温度所带来的误差。
(4)分析本实验的主要误差。
http://61.153.216.111/ggsyzx/wlsyzx/uploadfile/%B9%CC%CC%E5%C8%C8%B5%BC%C2%CA%B5%C4%B2%E2%C1%BF.htm
这里面有很详细的资料
⑻ 大学物理实验:为什么惯性秤竖直放置时测得的周期会变小
转动周期与转动惯量有关,竖直放置转动惯量小,周期小.
转动惯量dJ=dm*(dx)^2;积分求解;
⑼ 曲阜师范大学物理工程学院的教学实验室
基础物理实验中心
主要承担理工科专业的大学物理实验和物理学、光信息科学与技术专业的专业课程实验。
力热实验室 主要仪器设备有测量显微镜、三线摆、开特摆、声速测定仪、热电偶实验仪、粘滞系数测试仪、综合量热实验仪、杨氏模量测试仪、金属线胀系数测试仪、热功当量实验器等。可以进行液体粘滞系数的测定、转动惯量的测定、杨氏模量的测定、空气比热比的测定等20多个实验。
电磁学实验室 主要仪器设备有热电偶实验仪、磁滞回线实验仪、傅里叶合成分析仪、霍尔效应实验仪、、电子束实验仪以及各种仪表测量仪器。可以进行线性元件与非线性元件的伏安特性曲线的研究、电子束的聚焦与偏转、半导体热敏电阻特性的研究、万用电表的设计与制作等20多个实验。
光学实验室 主要仪器设备有迈克尔逊干涉仪、分光计、旋光仪、阿贝折射仪、反射式单色仪、平行光管以及单缝衍射光强分析仪等。可以进行棱镜折射率的测定、滤光片光谱透射率的测定、迈克尔逊干涉仪的调节和使用、薄透镜焦距的测定、组装望远镜以及全息照相等20个实验。
近代物理实验室 主要仪器设备有棱镜摄谱仪、傅里叶变换光谱仪、组合式多功能光谱仪、激光拉曼光谱仪、光学多通道分析器、核磁共振仪、光磁共振仪、塞曼效应仪、密立根油滴仪、富兰克-赫兹仪、测微光度计、黑体辐射实验装置、微波分光计。实验内容涉及原子分子物理、激光技术、电子衍射、核磁共振、X光、微波、真空薄膜等领域20多个实验项目,是物理学和光信息科学与技术专业的专业实验课程。
物理教学法实验室 配有微格教室、数字化信息系统实验设备、电磁打点计时器、静电演示实验箱、韦氏感应起电机、光的干涉衍射偏振演示器、充磁机、阴极射线管、电谐振演示仪、洛伦兹力演示仪、光电效应演示器、光通信及互感现象演示仪等器材。主要用于师范专业进行教学技能训练、教学论实验,演示实验训练、培养实验教学技能和能力。
物理演示实验室 演示实验通过多种仪器对丰富多彩的物理现象进行观察和探究,以激发各专业学生的探索热情、培养创新意识。可进行茹可夫斯基转椅、转动惯量、阻尼摆、傅科摆、飞机升力、高压放电、避雷针、楞次定律、双曲面等90多个实验。
光信息与光电技术实验中心
光纤通信实验室 主要设备有光纤通信原理综合实验系统、光无源器件实验箱、误码测试仪、波分复用器等。承担光纤通信课程的实验。可进行光信号发送和接收、PCM/ AMI/HDB3编译码、CMI/5B6B码型变换、光分路器和波分复用器性能测量等12个实验项目。
电磁场与微波技术实验室 主要设备有电磁波教学综合实验仪、数字存贮频谱分析仪、射频教学实训系统等。承担电磁场、微波技术与天线课程的实验教学。可进行电磁波极化、电磁波感应器设计与制作、微波传输线、定向耦合器等实验项目。
信息光学实验室 主要设备有激光全息与光信息处理综合测试仪、光学系统传递函数测量实验仪等。承担光信息科学与技术专业的专业实验。可进行激光全息与光信息处理综合实验、分辨率板直读法测量光学系统分辨率、利用变频朗奇光栅测量光学系统MTF值等实验项目。
激光技术实验室 主要设备有脉冲调Q固体激光器、激光光束分析仪、激光功率能量计等。承担光信息科学与技术专业的专业实验。可进行氙灯泵浦固体激光器的装调及静态特性、脉冲Nd:YAG激光倍频、激光模式测量与光束分析等实验项目。
电子电工实验中心
模拟电路实验室 主要设备有双踪示波器、DDS信号发生器、台式数字万用表、模拟电路实验箱等。主要承担电子信息工程、通信工程、物理学和光信息科学与技术专业的模拟电路实验。可完成基本放大器、电源、运算放大器的应用电路的近20多个实验项目。
数字电路实验室 主要设备有双踪示波器、DDS信号发生器、台式数字万用表、数字电路实验箱等。承担各专业的数字电路实验。可完成基本门电路和触发器的功能和特性测试实验,组合电路和时序电路的设计、组成和性能测试实验,数字电路应用小系统实验等20多个实验项目。
电工电路实验室:主要设备多功能、网络型电工电路实验台、通用示波器。承担电路分析和电工实验课程。可完成基尔霍夫定律、电压源与电流源的等效变换,正弦稳态电路的相量研究,三相交流电路电压、电流、功率的测量,变压器特性的测试,三相鼠笼式异步电动机的低压控制等20多个实验项目。
高频电路实验室 主要设备有BT-3GII频率特性测试仪、GOS-6052双踪示波器、DDS信号发生器、高频电子线路实验箱等。承担电子信息工程、通信工程专业的高频电路实验。可完成调制与解调、小信号调谐放大器、高频功率放大器等近20多个实验项目。
电子测量实验室 主要设备有低频频率特性测试仪、失真度测试仪、晶体管特性测试仪、双踪示波器、台式数字万用表、综合电子实验箱等。承担电子信息工程和通信工程专业的电子测量实验。可完成信号参数测试、元器件参数测试、电路参数测试等30多个实验项目。
综合电子设计实验室 主要设备有计算机、直流稳压电源、MF47万用表和常用工具。承担电子信息工程和通信工程专业的综合电子设计实验。为学生提供电子设计的开放式实验平台,在这里完成各种应用电路的设计、组装和调试工作,锻炼同学们的电子技术应用设计能力。
PCB板工艺实训室 主要设备有AM-9050自动换刀钻孔机、AM-GH1040激光光绘系统、AM-C4高速换向脉冲孔金属化设备、AM-SG400全自动线路板抛光机、AM-C7 PCB冲片机、AM-DQX60电镀铅锡机等全套PCB制版设备。承担电子信息工程、通信工程专业的PCB板工艺实验。可完成PCB板工艺中的所有环节的相关实验项目20多个,同时还可以对外承接小批量的PCB板加工。
SMT工艺实训室 主要设备AM-SMD838表面贴装回流焊机、AM-AUTOTP2自动贴片机等大型自动化设备,有电子工艺生产流水线20个工位。承担电子信息工程、通信工程专业的SMT工艺实训。可完成各种SMT产品的生产工艺实训,同时也可以对外承接小批量的SMT电路板加工焊接。
信息与通信实验中心
微机原理实验室 主要设备有DCVV-598JH微机原理与单片机实验系统及配套微机。承担本科生微机原理与接口技术、单片机原理与应用课程的软件和硬件实验课程,可进行相关原理、接口、控制、编程方面的实验项目近30个。
软件实验室 主要设备为M4000型计算机。承担电路分析、C语言程序设计、汇编语言、数据结构、现代软件编程技术、电子测量、数字信号处理等相关课程的软件仿真实验。可完成电路设计、电路分析仿真、数据结构、信号处理类60多个实验项目。
电子设计自动化(EDA)实验室主要设备有CPLD-4型EDA可编程逻辑器件实验箱、自动控制原理模拟实验仪、信号发生器和配套微机。承担电子信息工程和通信工程专业本科生EDA技术及应用、自动控制原理课程实验,以及数字信号处理和信号与系统课程的基于MATLAB环境的软件仿真实验。可进行组合逻辑电路、可编程器件设计、系统的阶跃响应分析、数字滤波器设计、信号与系统分析等实验项目50个。
数字信号处理(DSP)实验室 主要设备为数字信号处理实验箱、ARM嵌入式系统实验箱及开发板,配套微机。承担电子信息工程、通信工程专业本科生DSP原理与应用、嵌入式系统开发与应用等课程的实验。可进行基于DSP芯片、系统、外部控制、算法、Linux内核基础、Linux程序设计、Xscale 270接口等实验项目20个。
信号与系统实验室 配有RZ8662型信号与系统实验箱,数字示波器等设备。承担电子信息工程和通信工程专业本科生信号与系统课程的实验。可进行阶跃响应与冲激响应、抽样定理与信号恢复、信号的卷积、信号的分解与合成、滤波器特性等实验项目12个。
程控交换实验室 配有先进的RZ8623型程控交换技术实验平台,以及相应的测控设备。承担程控交换、现代通信网等课程的实验。可开设双音多频(DTMF)接收与检测、话路PCM CODEC编译码、二/四线变换与回波返损测试、数字时分复用与中继传输实验及程控交换原理等实验。
通信原理实验室 配有通信原理实验箱及测试设备,承担通信原理课程的实验教学。可开设信号发生器系统实验、脉冲幅度调制(PAM)及脉冲编码调制(PCM)实验、2FSK及2PSK调制解调实验、眼图实验、增量调制编译码等实验。
移动通信实验室 配有RZ6003移动交换机、RZ6002移动基站、RZ6001移动通信试验箱、计算机等设备,承担移动通信课程的实验教学。可开设语音模数转换和压缩编码实验、数据和语音系统通信实验、移动系统信令交互、无线信道及信道编码等实验。
现代通信实训中心 配备有完整电信运营网络微型化的现代通信实验平台,主要包含VOIP、IPTV、光传输、EPON光接入等四个实验平台,可完成通信工程及相关专业的实习实训任务;同时,它可以提供通信网络工程师、IPTV工程师等相关的职业培训和技能培训。可进行VOIP系统原理、VOIP电话互通配置、IPTV视频业务、SDH点对点组网配置、SDH环形组网配置、SDH复用段保护环保护(MSP)倒换、Telnet方式调试EPON设备、EPON接入安全保障配置、点对点FE以太网光接入组网等实验实训项目。
⑽ 织物重复性拉伸收缩测试用什么设备
透气性测试方法有两种,分别分为压差法和等压法。广泛使用的是压差法,可分为真空压差法和正压差法(体积法)。下面上海千实将为您介绍测试透气性的两种常见方法:
一、压差法
真空法是压差法中最具代表性的一种测试方法。它的测试原理(见图 1)是利用试样将渗透腔隔成两个独立的空间,先将试样两侧都抽成真空,然后向其中一侧(A 高压侧)充入 0.1MPa(绝压)的测试气体,而另一侧(B 低压侧)则保持真空状态,试样两侧形成 0.1MPa 的测试气体压差。测试气体渗透通过薄膜进入低压侧并引起低压侧压力的变化,用高精度真空规测量低压侧压力的变化量就可以利用公式计算得到测试气体的气体透过量(GTR)。相关标准有 ISO 2556、ISO 15105-1、ASTM D 1434(M法)、GB 1038、JIS K 7126(A法)等。ISO 15105-1 提供的气体透过量(GTR)计算公式如下:
式中: V C ——低压侧的体积;
T ——试验温度(热力学温度);
pu ——高压侧的气体压强;
A ——有效渗透面积;
dp/dt ——当渗透状态稳定后,在低压侧单位时间内压强的变化量;
R ——气体常数。
真空法是采用负压差方法来实现试样两侧 0.1MPa 的压差,当然也可以通过正压差的方法来实现,最常用的正压差法是体积法。由于体积法无需对渗透腔抽真空,也不用进行真空度的保持,所以降低了设备制造及试验的难度。相关的测试标准有 ASTM D 1434(V 法)等。
压差法对测试气体的通用性非常好。由于膜技术理论的支持,真空法在透气性测试中一直作为基础方法使用,科研检测机构多采用这种方法。随着真空规检测技术的进步、以及高真空技术在设备设计上的应用,大大提高了设备的检测精度以及测试数 据的重复性。它的突出优点是能够通过一次测试得出材料的渗透系数、扩散系数、溶解度系数3项阻隔性指标。
在选购真空压差法透气性测试设备时,需要注意以下参数指标:测试腔能达到的真空度、真空规的精度及量程、“空白试验”数据及测试数据重复性,以及设备是否具备自控温功能。测试腔真空度不但体现了所采用真空泵的抽真空能力,还体现了测试腔体以及相关管路的密封性能,如果机械结构中存在泄漏点,则试验结果将会受到严重的干扰,无法体现材料的真实阻隔性。如果只有某一次试验达不到要求的真空度,极有可能是由于试样装夹密封不当所引起的。标准要求真空规的精度应不低于6Pa,目前比较优秀的真空规的分辨率是其满量程的0.1%,由于测试元件的分辨率都要优于它的测试精度,因此真空规的量程一般要小于6kPa。“空白试验”数据以及测试数据的重复性是衡量设备经受各种因素影响的综合指标,试验环境的温湿度控制情况对测试结果也有影响,尤其是温度对阻隔性测试的影响最为显著,可以参阅2005年1月17日及2月21日兰光实验室论坛文章。选购正压差法设备时,由于这种方法无须抽真空,因而只需要关注压力传感器的精度和量程、“空白试验”数据以及测试数据的重复性等指标就可以了。
二、等压法
目前用于包装材料透气性检测的等压法主要是传感器法,它以检测材料的透氧性为主,该方法对试验气体有选择性,测试原理(参见图 2)如下:利用试样将渗透腔隔成两个独立的气流系统,一侧为流动的测试气体(A,可以是纯氧气或是含氧气的混合气体),另一侧为流动的干燥氮气(B)。试样两边的压力相等,但氧气分压不同。氧气在浓度差作用下透过薄膜进入氮气流,被送至氧传感器中,由氧传感器精确测量出氮气流中携带的氧气量,从而计算出材料的氧气透过率。传感器法设备在正式试验之前需要使用标准膜进行设备标定,确定设备的校正因子,并将它用于正式试验的计算中。传感器法的相关标准有 ISO 15105-2,ASTM D 3985,ASTM F 1927,ASTM F 1307 等。ISO 15105-2 提供的氧气透过量(O2 GTR)计算公式如下:
式中: U ——试样测试时的输出电压信号;
U0 ——电压零信号;
k ——设备的校正因子;
Pa ——环境大气压;
P0 ——测试气体中的氧气分压差;
A ——有效渗透面积。
在检测材料的氧气透过率时使用的是氧传感器,只能对氧气的渗透性进行分析,由于氮气作为载气用于输送渗透通过试样的测试气体,所以目前利用这种测试结构检测氮气透过率还是无法实现的。
传感器法是随着氧探测器技术的不断成熟而出现的。相对于真空法测试,它的试验时间有一定的缩短,更常用于国际贸易中高阻隔性材料的检测。另外,由于使用的传感器属消耗型元件,所以设备标定所得的校正因子并不是长期有效的,需要根据要求进行周期性设备标定。当传感器的损耗达到一定程度时必须更换,因此传感器法设备的检测成本比压差法设备的检测成本要高一些。不同厂商的设备其传感器的使用寿命会有较大差别, Labthink TOY-C1所采用的氧传感器在正常使用情况下预计能够使用12-30个月,算是使用时间比较长的了。等压法在测试试样两侧保持常压,使得试样两侧的压力相等,这给容器透气性检测奠定了基础,可避免由于容器壁两侧压差过大导致容器爆裂的情况。ASTM F 1307是检测容器透氧性的测试标准,它与ASTM D 3985(检测薄膜、薄片的透氧性)对设备结构的设计以及氧传感器的使用方式相近,将容器检测附件拆卸之后,同一款设备完全可以按照 ASTM D 3985 进行薄膜、片材的透氧性测试。目前市场上已经有几款同时具有容器、薄膜透氧性检测双重功能的检测设备,如Labthink TOY-C1容器/薄膜透氧仪。