清华大学教授盖国胜
⑴ 盖国胜的介绍
盖国胜,男,汉族,清华大学材料科学与工程系工学博士, 研究员, 粉体工程研究室主任、能源环境材料研究所副所长。主要从事粉体加工技术及其在不同领域中的应用,擅长工程技术开发。

⑵ 天然石墨用作锂离子电池负极材料的研究
沈万慈 李新禄 邹麟 康飞宇 郑永平
(清华大学材料科学与工程系,新型炭材料研究室,北京 100084)
摘要 中国具有丰富的天然石墨资源,对天然石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。对高纯微晶石墨进行了整形和表面包覆碳膜的处理,首次循环效率提高至89.9%,循环稳定性也得到了明显改善。试验表明,表面包覆的微晶石墨是一种优良的锂离子二次电池复合负极材料。采用H2SO4-GIC石墨层间化合物技术对鳞片石墨进行预膨胀处理,在石墨颗粒内形成亚微米-纳米空隙,提高了石墨制品的放电容量、快速充放电能力及循环寿命,特别适用于高能锂离子电池的发展要求[1~11]。
关键词 天然石墨;表面包覆;预膨胀;负极材料;锂离子电池。
第一作者简介:沈万慈,清华大学材料科学与工程系教授,长期从事石墨和新碳材料的研究和开发。E-mail:[email protected]。
一、前言
中国石墨产品可分为鳞片石墨和微晶石墨两大类,鳞片石墨是指石墨晶质大于1μm,层片结构发达,但原矿品位低,一般含碳量在10%以下;微晶石墨又称为无定形石墨、隐晶石墨、土状石墨,晶质小于1μm,其特点在于由小晶粒团聚而成为聚晶体,原矿品位高,一般含碳量在50%以上,郴州鲁塘矿矿石含碳量达到80%以上。
微晶石墨用作锂离子电池的负极材料具有较高的嵌锂容量和循环稳定性,并且资源丰富、价格低廉,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。同样,鳞片石墨也可以用于锂离子电池的负极材料,但是必须要解决石墨在储电过程中的胀缩问题,否则它会直接影响电池的使用寿命。
二、微晶石墨的整形
微晶石墨颗粒内部是由许许多多取向无序的晶粒组成的,因此在微晶石墨球形化的过程中,极易产生粉碎现象,大多数颗粒被粉碎成10μm以下的细小颗粒。这些细小颗粒对石墨的负极性能是不利的。锂离子电池用天然石墨要求比表面积小、振实密度高、颗粒均匀,以提高其负极性能,这就要求颗粒粒度分布窄、表面光洁、球形度高。天然石墨必须经过粉体深加工,使其达到锂离子电池的使用要求,然而,通过普通机械粉碎方式很难达到这些要求。本文以化学法提纯后的微晶石墨为原料(其纯度C≥99.5%),对搅拌磨系统的微晶石墨整形效果进行了研究。表1是本研究中使用的微晶石墨的碳含量和粒度。

图2 GICs处理后循环性能
四、鳞片石墨用于锂离子电池负极材料
项目组在研究将天然鳞片石墨用作负极材料时,发现天然石墨由于石墨化程度高,其充放电容量要比人工制造的中间相炭微球(MCMB)高。MCMB容量在300 mA·h左右,而鳞片石墨为340 mA·h左右。但考虑循环性能时,鳞片石墨负极要差,多次充放电后,容量损失大。究其原因,主要是充放电时石墨晶体有10% 左右的涨缩量,鳞片石墨集中在一个方向上的多次涨缩使得负极膜损坏,造成性能下降。针对这一问题,本研究提出用石墨层间化合物(GICs)原理处理,在石墨颗粒内形成微米-纳米空隙,预制晶格涨缩空间,以提高循环性能。此项技术的关键在于缓慢有序的脱插,使插入物气体的逸出只在石墨内造成微米-纳米级的孔隙,而不能发生明显的体积膨胀,通常采用H2SO4-GIC、MClx-GICs或其他受主型GICs,在100~300℃低温的条件下经12~72 h的缓和脱插处理,而后对脱插后的石墨微粉进行微粒表面改性,包覆处理,制成负极材料。这样制得的负极材料既有鳞片石墨的高容量,又具有良好的循环性能(图2)。目前产品在电池上已进行产品性能检测。
五、总结与展望
我国锂离子电池产业仍将保持年平均30%以上的增长速度,2005年国内小型锂离子电池全年产量超过10亿只,石墨负极材料年需求量为5000~10000 t,世界需求量在2×104t左右,而目前供应量缺口很大。随着电动汽车的迅速发展,锂电池负极材料的需求将更加旺盛。
鉴于天然石墨资源丰富、价格低廉,并且具有较高的嵌锂容量,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是国内石墨产业升级的有效途径之一。综合考虑造价和性能,在锂离子电池负极材料中天然石墨最具发展潜力,但是石墨存在着一些有待解决的问题,如首次循环的不可逆容量损失、循环稳定性等问题。天然石墨改性技术的不断发展,包括球形化处理、表面包覆树脂、插层/脱插的微膨化处理等,提高了石墨制品的放电容量、快速充放电能力、循环寿命等,改性天然石墨将成为高能锂离子电池负极的首选材料。
参考文献和资料
[1]何明,盖国胜,沈万慈,等.制粉工艺对天然微晶石墨锂离子阳极材料结构与性能的影响.电池,2002,32(4):197-200
[2]何明,陈湘彪,康飞宇,等.树脂炭包覆微晶石墨的制备及其电化学性能.电池,2003,33(5):281-284
[3]陈湘彪,刘旋,沈万慈.包覆鳞片石墨嵌锂行为的研究.电池,2004,34(6):394-396
[4]张静,郑永平,沈万慈,等.GICs技术改性天然石墨作为锂离子电池负极材料的研究.电池,2006,36(4):257-259
[5]沈万慈,等.一种锂离子电池石墨阳极膜制品及其制备方法和应用.专利号:ZL 97 1 21933.8
[6]沈万慈,等.炭包覆石墨微粉的制备方法.专利号:ZL 02125715.9
[7]Andersson A M,Abraham D P,Haasch R,et al.Surface characterization of electrodes from high power lithium-ion batteries.J.Electrochem.Soc.,2002,149(10):A1358-1369
[8]Broussely M.Recent developments on lithium ion batteries at SAFT.J.Power Sources,1999,81/82:140-143
[9]张万红,岳敏.锂离子动力电池及其负极材料的研究现状及发展方向.新材料产业,2006,9:54-59
[10]张世超.锂离子电池关键材料产业技术现状与发展趋势新材料产业.新材料产业,2006,3:32-36
[11]董建,周伟,刘旋,等.微晶石墨作为阳极材料对二次锂离子电池电化学性能的影响.炭素技术,1999,(1):1-6
An Investigation on Natural Graphite Used as an Anode Materials for Lithium-ion Batteries
Shen Wanci,Li Xinlu,Zou Lin,Kang Feiyu,Zheng Yongping
(The Laboratory of New Carbon Materials,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China)
Abstract:The resource of natural graphite is rich in China.It will be an effective way to upgrade national graphite instry if natural graphite after modification may be used in lithium ion battery.In the research,microcrystalline graphite with high purity was sphericalized and coated with a carbon film on the surface.The initial cycle efficiency was improved to be 89.9% and the cycle stability was remarkably improved.The experi ments proved that microcrystalline graphite with carbon coating was an excellent anode material for lithium-ion battery.In addition,H2SO4-GIC technique was used to prepare the natural flake graphite powder with mild-exfoliation.It was found that sub-micro and nano pores formed in the graphite samples,that improved the reversible capacity,rate capacity and cycle life.The proct meet well the requirement of lithium-ion battery.
Key word:natural graphite,surface coating,mild-exfoliation,anode material,lithium-ion battery.
⑶ 哪里能查到废弃混凝土再利用的国家有关政策
水泥与混凝土利废技术及可持续发展论坛近日在北京举行,会议以水泥、混凝土行业运用废弃物为中心,围绕国家政策、企业实践、利废技术和清洁生产机制(CDM)四大主题进行大会发言与辩论。
会议选择性地邀请了代表国内外在该领域前沿的30余位知名专家进行大会发言和交流。世界可持续发展工商理事会和美国环境保护局代表分别就国际水泥工业界的可持续发展行动,及美国在促进水泥窑运用废弃物方面的经验进行了介绍;大会主席中国建筑材料工业协会副会长徐永模作了关于发展循环经济的技术战略的报告;中国工程院院士、西安建筑科技大学校长徐德龙徐德龙介绍了运用钢渣、矿渣、粉煤灰、煤矸石等废弃物作为胶凝材料组分开发的工程技术研究;德国水泥企业协会研究院总裁马丁·施耐德博士介绍了德国在水泥工业中运用各种固体废弃物的技术装备、标准规范和发展趋势;美国格雷斯公司主任科学家史才军博士对国外碱激发胶凝材料的研究与应用作了专题报告;澳大利亚墨尔{TodayHot}本大学德文特教授介绍了国际上有关“地质聚合物水泥”研究与应用的进展。
南京工业大学教授杨南如,清华大学教授廉慧珍、覃维祖、孙恒虎、盖国胜,中国地质大学教授马鸿文,重庆大学教授杨长辉,华南理工大学教授文梓芸,中国建材院教授级高工席耀忠,全国水泥标委会秘书长颜碧兰,建材情报所总工程师崔源声,北京城建集团总工程师路来军等专家在会上分别就各自研究领域的成果作了相关报告。瑞士豪西盟集团、日本太平洋水泥、德国海德堡集团,及国内的乌兰水泥、北京水泥厂等企业就各自的利废工艺技术和实践经验进行了大会交流。
针对许多行业内普遍关注的新技术、新工艺、新材料的研究开发和在工程建立中的应用问题、标准问题以及申请行政许可等问题,与会代表向政府主管部门官员进行了详细咨询,对碱激发胶凝材料、废弃物资源化技术、粉体加工技术等重点问题,以及“凝石”技术等一些有争议的问题进行了热烈讨论。
对于“凝石”这类利废技术,通过坦率的面对面的讨论交流,有了更深入更全面的认识,持不同意见的各方的距离缩短了,一些模糊的和不正确的认识得到了澄清。由于种种原因,“凝石”材料目前是按熟料-矿渣-粉煤灰-外加剂的办法生产,还需要进行更多的试验和应用研究,特别是对混凝土工程应用而言,许多重要的结构材料性能如干缩、徐变、外加剂的相容性以及耐久性方面的一些性能还需要进行试验研究,从工程应用的角度,还必须通过建立部“三新”的技术论证和许可审查,大规模应用还为时尚早。
⑷ 石墨层间化合物制备技术及其应用研究
康飞宇 邹麟 沈万慈 郑永平 盖国胜 任慧 顾家琳
(清华大学,材料科学与工程系,新型炭材料研究室,北京 100084)
摘要 石墨的碳原子层面间以范德华力结合,容易被外力打开而插入其他分子、原子,从而形成石墨层间化合物(GICs)。课题组通过控制GICs改性的氧化/插层过程,发明了优质低硫可膨胀石墨,膨胀容积大于160 mL/g,残硫量低于800×10-6;发明了MClx-GICs(M为过渡族金属)微粉用于电磁波吸收屏蔽材料,红外、激光完全遮蔽达15 min以上;通过控制插层/脱插过程,制备了高温膨胀石墨用于吸油材料,吸附重油量大于80 g/g,清理污水效果远优于活性炭;发明了低温脱插微膨石墨用于锂离子电池负极材料,可逆容量达370 mA·h/g,循环性能良好[1~20]。
关键词 石墨层间化合物;膨胀石墨;过程控制。
第一作者简介:康飞宇,男,工学博士,教授,主要从事天然石墨的深加工技术和多孔炭材料的研究。E-mail:[email protected]。
一、引言
天然鳞片石墨具有优异的理化特性,在各个高技术领域、工业领域均有着广泛的应用前景。但天然鳞片石墨为片状的粉料,其形态、结构及性能难以满足不同科技领域的要求。本研究利用石墨层间化合物技术,将鳞片石墨原料改性为功能性石墨材料,控制氧化/插层及插层/脱插过程,获得优质的可膨胀石墨材料、多孔石墨材料、柔性石墨双极板材料、锂离子电池负极材料、电磁波吸收材料等。
石墨是典型的层状结构,由六角网状结构的碳原子平面叠合而成,在网状平面上,碳原子间为共价键和金属性大π键结合,为强键合,原子间距仅为0.142nm,而碳原子平面间为范德华力的弱键合,层间距达0.335nm,这种结构决定了石墨层间可以插入异类原子、分子、离子而形成各类石墨层间化合物(Graphite Intercalation Coumpounds,简称GICs)。GICs中应用最多的是受主型GICs,即插入物接受碳原子层的电子。GICs是非化学计量化合物,并且碳原子层及插入层物质保留着各自的结构,因此可以认为是一种纳米级的复合材料。由于层间的电子交换,GICs出现许多特殊的理化特性,如高导电性、催化性、选择吸附性等。因此GICs处理可提供石墨改性的多重可能性。本文阐述利用GICs技术处理中控制氧化/插层过程制备优质可膨胀石墨和电磁波吸收(隐身)材料;利用GICs的插层/脱插过程控制制备多孔石墨及锂离子电池负极材料。
二、石墨层间化合物改性技术
(一) H2O2-H2SO4共插层技术:合成低硫可膨胀石墨
受主型GICs的形成是一个氧化-插层过程,首先是[O](及其他氧化性物质)与石墨层的π电子作用,发生氧化,使层间距加大,引导插入剂进入石墨层间,实现插层。氧化过程是受主型GICs形成的一个控制环节,当插层剂本身氧化性不够时,插层反应十分缓慢甚至不能进行,此时为了保证GICs的形成,就要依靠附加的化学氧化剂或电化学阳极氧化来实现插层反应。
GICs材料目前在工业上应用量最大的是可膨胀石墨,它是制备柔性石墨及多孔石墨的主要原料。可膨胀石墨是以GICs的插层剂在高温快速加热时气化,使石墨GICs中产生巨大内压从而使石墨颗粒层间胀开,在C轴方向膨胀几十至几百倍而得到的产品。绝大多数GICs都具有可膨胀性,但综合考虑,采用硫酸插层的H2SO4-GICs用作可膨胀石墨最经济,所以工程上也称酸化石墨。
硫酸插层的可膨胀石墨的重要质量指标之一是其残硫含量,硫是有害元素,会影响到柔性石墨等后续产品的质量。决定残硫含量的是硫酸氧化-插层过程及插入量。普通可膨胀石墨900~1000℃膨胀后,残硫含量1300×10-6~2000×10-6。技术关键是降硫。根据GICs理论,一是利用氧化剂的共插层作用,减少H2SO4的插入,二是设计降低挥发分即残留插层的H2SO4量的方法来降硫。实际上氧化剂本身也是一种插层剂,与H2SO4是共同插入的关系,氧化性越强,共插入过程越强。氧化剂的强弱可由氧化剂的标准电极电位进行判定,如表1所示。

图5 多孔石墨吸油能力
多孔石墨由于其疏水亲油特性及多孔结构,对油类及大分子有机物质有超大吸附量,分散态多孔石墨在水中吸附重油量大于80 g/g,是其他吸油材料所不能及的(图5)。应用本研究的插层/脱插控制技术制备的多孔石墨低密度板,在包钢带钢厂冷却水池除油及清河毛纺厂印染废水脱除COD的工程应用实验中,其去污效果远好于活性炭。多孔石墨作为水体污染治理的一种材料,有良好的前景。该项技术已经申报发明专利《一种油污染吸附剂的制备及其回收再生方法》(申请号200410037978.1)。同时利用多孔石墨微粉对电解质的良好浸润能力,将其用作高能碱性电池的正极新型导电添加剂,替代日本进口产品,目前已经产业化。
参考文献
[1]Zheng Y P,Wang H N,Kang F Y,et al.Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles.Carbon,2004,42(12/13):2603-2607
[2]Inagaki M,Kang F,Toyoda M.Exfoliation of graphite via intercalation compounds.Chemistry and Physics of Carbon Chemistry and Physics of Carbon,2004,29:1-69
[3]Inagaki M,Toyoda M,Kang F Y,et al.Pore structure of exfoliated graphite—A report on a joint research project under the scientific cooperation program between NSFC and JSPS.New Carbon Materials,2003,18(4):241-249 DEC
[4]Kang F Y,Zheng Y P,Zhao H,et al.Sorption of heavy oils and biomedical liquids into exfoliated graphite -research in China.New Carbon Materials,2003,18(3):161-173
[5]Kang F Y,Zheng Y P,Wang H N,et al.Effect of preparation conditions on the characteristics of exfoliated graphite.Carbon,2002,40(9):1575-1581
[6]Kang F Y,Yang D X,Qiu X P.AC impedance spectrum analysis of the intercalation mechanism in HCOOH-GIC formation.Molecular Crystals and Liquid Crystals,2002,388:423-428
[7]Shen W C,Wen S Z,Cao N Z,et al.Expanded graphite—A new kind of biomedical material.CARBON,1999,37(2):356-358
[8]Kang F,Leng Y,Zhang T Y.Electrochemical synthesis and characterization of formic acid graphite intercalation compound.Carbon,1997,35(8):1089-1096
[9]Kang F,Zhang T Y,Leng Y.Electrochemical behavior of graphite in electrolyte of sulfuric and acetic acid,Carbon,1997,35(8):1167-1173
[10]Kang F Y,Leng Y,Zhang T Y.Influences of H2O2 on synthesis of H2SO4-GICs.Journal of Physics and Chemistry of Solids,1996,57(6/8):889-892
[11]任慧,焦清介,沈万慈,等.宽频谱红外烟幕剂CuCl2-NiCl2-GIC的研究.含能材料,2005,13(1):45-48
[12]任慧,焦清介,崔庆忠.超细粉FeCl3-插层石墨化合物的制备与表征.含能材料,2005,13(5):308-311
[13]任慧,焦请介,崔庆忠.烟幕剂CuCl2-FeCl3-GIC干扰电磁波性能研究.兵器材料科学与工程,2005,(5):7-10
[14]王鲁宁,陈希,郑永平,等.膨胀石墨处理毛纺厂印染废水的应用研究.中国非金属矿工业导刊,2004,(5):59-62
[15]王海宁,郑永平,康飞宇.膨胀石墨孔结构的定量研究.无机材料学报,2003,18(3):606-612
[16]彭俊芳,康飞宇,黄正宏.填充氧化铁颗粒的石墨基复合材料.材料科学与工程,2002,20(4):469-472
[17]杨东兴,康飞宇.一种纳米复合材料——石墨层间化合物的结构与合成.清华大学学报(自然科学版),2001,(41) 10:9-12,35
[18]周伟,兆恒,胡小芳,等.膨胀石墨水中吸油行为及机理的研究.水处理技术,2001,(6)
[19]沈万慈,曹乃珍,李晓峰,等.多孔石墨吸附材料的生物医学应用研究.新型炭材料,1998,(1):50-54
[20]曹乃珍,沈万慈,温诗铸,等.特种石墨材料的抑菌作用研究.中国生物医学工程学报,1996,(3):97-98
An Investigation into Modification Technologies of Graphite Intercalation Compounds and Their Applications
Kang Feiyu,Zou Lin,Shen Wanci,Zheng Yongping,Gai Guosheng,Ren Hui,Gu Jialin
(The Laboratory of New Carbon Materials,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China)
Abstract:Graphite with layers structure is easy to form graphite intercalation compounds(GICs) by means of intercalation reactions e to the weak cohesion force among carbon layers integrated with the Van der Waal’s interactions.By controlling the oxidation-intercalation process,high quality expanded graphite with low resial sulfur content and MClx-GICs(M =Fe,Co,Ni,Cu,Zn) powder for electromagnetic wave absorbing and shielding materials have been invented.The expansion volume of expandable graphite can be larger than 160 ml/g while the resial sulfur content is less than 800ppm.The MClx-GICs powder can shield infrared ray and laser completely in a ration of up to 15 min.The high temperature expanded graphite for heavy oil sorption and mild-expansion exfoliated graphite for anode materials in lithium ion battery by controlling the intercalation/de-intercalation process have been also invented.The expanded graphite can absorb heavy oil up to 80 g/g,it also exhibits better performance than commercial active carbon in sewage treatment.The low temperature mildexpansion exfoliated graphite as anode material shows a high reversible capacity of 370 mAh/g and a good recycling performance.
Key words:graphite intercalation compounds,expanded graphite,process control.
⑸ 清华大学材料科学与工程系粉体工程研究室
清华大学材料系粉体工程研究室(以下简称研究室)作为从事非金属矿物的超细、分级、表面改性、表面包覆、微纳米颗粒复合和深加工研究的专业实验室,多年来承担了国家科技攻关计划、“863”、自然科学基金、清华大学基础研究基金和国家计委产业化示范项目,以及企业委托开发等课题。有9项通过省部级鉴定,达到国际先进和国内领先水平,其中有6 项研究成果分别获得北京市、国土资源部等部门的科技进步一、二等奖。
累计培养博士后、博士7人,硕士9人,在读研究生6人;为国内粉体行业培养了一批科研和工程技术人员。发表学术论文100多篇,SCI收录6 篇,ISTP收录2篇,EI收录9篇。出版学术专著2部,参编3部,其中学术著作《超细粉碎分级技术》销量超过5000 册。申请发明专利7 项,授权3项;申请实用新型专利5项,已授权2项。
研究室主任盖国胜博士,现有副高以上职称的研究人员3 名,博士后3 名,博士2 名,硕士生6名和其他技术人员3名。
多年来,通过积极广泛的国际合作交流,引进吸收国外先进技术,不断探索,积累了丰富的粉体加工技术经验,开发了系列超细粉碎、分级、改性、包覆、资源回收等大型设备与整套生产系统,在化工、建材、机械、食品、中药、保健品等行业的60 多个国内外企业进行了技术实施,创造了近20亿元的产值,取得了显著的经济效益与社会效益。部分粉体加工技术已出口东南亚,竞逐国际市场。有代表性的工业生产线有:超细粉体湿法改性系统、超细粉体干法改性系统、高速气流粉碎分级系统、功能型母粒生产系统、湿法超细加工系统、雷蒙磨改造微细加工、球磨系统用大型超细分级机、大型搅拌磨、冲击粉碎分级机、振动超细加工、聚合物超细加工等。
研发室在各级领导的关怀和社会各界人士帮助下,经历了在粉体、材料和资源领域10年创业与积累,实现了从研究到产业开发,又在产业开发基础上加深研究的转化。而今,研究室以“自强不息,厚德载物”的校训为座右铭,强化功能性复合粉体制备与应用的基础研究;以河北清华研究院作为工程开发和生产基地;作为中国建材协会粉体技术分会挂靠单位,通过中国粉体工业信息网建立国内外科技与商务信息网络;与设备加工和粉体生产企业结成紧密产学研联合体,共同开发市场;实现科技产业报国的目标。
地址:北京清华大学材料科学与工程系粉体工程研究室 邮编:100084
电话:010-62771473,62781144 邮箱:[email protected]
网址:http://www.chinapowder.cn 负责人:盖国胜
