当前位置:首页 » 教授导师 » 北京大学超导教授

北京大学超导教授

发布时间: 2025-06-23 09:02:45

1. 吉林大学物理学院的教学科研机构

吉林大学凝聚态物理学科是1986年批准的原国家重点学科。该学科1989年建立超硬材料国家重点实验室,1995年通过验收并对外开放,1998年通过教育部预评估。1993建立国家物理基础科学研究与教学人才培养基地。1995年列入211工程项目重点建设学科,1998年成为首批物理学一级学科博士点授权单位。
该学科多年来一直围绕学科发展的前沿、国家经济和国防建设的需要开展研究,形成了高压物理、超硬材料与高压相功能材料,薄膜物理,高压极端条件下的稀土固体物理学,稀土永磁化合物与材料磁性和非周期局域固体结构等五个各具特色、相对稳定的研究方向,取得了一系列重要研究成果,受到国内外同行的重视。近五年,在国内外主要学术刊物上发表论文600余篇,其中SCI收录300余篇;在国际重要学术会议上做特邀报告10次。目前承担科学研究项目60多项。获省部级奖励3项,国家发明专利7项。
近五年,本学科共招收56名博士(已获学位27名),招收111名硕士(已获学位57名),有3名博士后出站。不仅为本学科发展培养了一只高素质的后备队伍,也为其它相关领域输送了大量高层次人才。开展了广泛的学术交流活动,派出20多人进修或短期合作研究,接待了30多人次的国际知名专家学者讲学,聘请多名学者任名誉或客座教授,保持了与多个国际一流单位的长期紧密合作关系,举办了全国学术会议7次,扩大了本学科在国内外的影响和知名度。
近20年来凝聚态物理的研究热点:
1.准晶态的发现(1984年)
2.高温超导体的发现YBaCuO2(1986年)
3.纳米科学(1984年)
4.材料的巨磁阻效应LaSrMnO3(1992年)
5.新的高温超导材料MgB2(2001年) 师资力量:
目前本专业从事凝聚态物理研究的集体(固体物理教研室)有教师16人,教授8人(其中博士导师2人)、副教授5人、讲师和助教4人。
学术带头人苏文辉教授,现任吉林大学稀土固体物理研究室和物理系固体物理教研室主任,兼任中国科学院国际材料物理中心协作成员、教育部吉林大学无机合成与制备化学重点实验室顾问、中国《高压物理学报》副主编,全国氢能发电装置委员会委员,美国物理学会会员。曾任中国物理学会高压物理专业委员会第一、第二届委员,第二届(1990-1995年)副主任委员,国际学术刊物编委;受李政道教授聘请,任CCAST(WorldLab.)特别成员。长期从事高压高温极端条件稀土固体物理和化学、新型化合物的合成研究。已发表英文论文130篇、中文论文120多篇,已培养出22名博士、81名硕士、2名博士后,指导过10多名国内外访问学者。
教研室其他人员:
吕天全、张程祥、许大鹏、刘晓梅、姚斌、郑以松、贺天民教授,
纪媛副教授等,
他们都从事凝聚态物理和高压研究多年,每人已发表30-40篇学术论文.
主要研究方向
1)高温高压极端条件稀土固体物理学。
2)硼笼多面体化合物、纳米材料和生物物质的高压研究,新物质新材料的高压合成及应用。
3)固体稀土氧化物燃料电池发电及其它新能源的开发应用研究。
4)凝聚态物质(纳米材料、稀土氧化物、高温超导体、磁性材料、合金材料等)的结构特性研究。
5)低维凝聚态理论(电子态、电输运特性)。
6)高分子统计理论。
7)高压物理学。 专业简介:
吉林大学磁学专业(磁学教研室)成立于1954年,是国内最早建立的五个磁学专业之一(北京大学、南京大学、兰州大学、山东大学、吉林大学)。
教学方面,磁学教研室自1955年开始承担磁学专门化教学任务,40多年来培养出几百名本科生、几十名硕士研究生和六名博士研究生。毕业生遍布全国乃至世界各地,很多人成为所在单位的骨干,其中包括大学院长、国务院学位委员会委员、研究所所长、工厂厂长、总工程师。
科研方面,共承担完成9项国家自然科学基金项目(其中重点基金一项),3项吉林省科委项目。在SCI收录的国内外著名学术杂志上发表论文一百多篇,申请专利2项。共获得国家科技进步奖和省部级奖7次,主要研究成果有:
①解决了Fe-Ni合金薄膜磁场感生各向异性的起源问题,定量计算拟合了感生各向异性常数随成分、温度、以及蒸积过程中衬底温度的关系;
②发现了金属Co磁场冷却后形成晶体织构,并发现它就是磁场冷却感生磁各向异性的起源;
③阐明了非晶Gd-Co薄膜易磁化轴垂直于膜面的磁各向异性起源于其微柱状结构,柱表面上Gd的择优氧化,以及Gd-Co间的亚铁磁耦合。
④在自旋玻璃中发现磁场感生各向异性效应;
⑤系统研究了各种稀土永磁化合物的晶场和磁性,发现在一些化合物中,4f-3d交换作用的各向异性很大,4f-4f交换作用不能忽略,阐明了RCo5中Pr与Nd离子的变价行为。
科技开发方面,于1990年创建了磁性材料中试基地(隶属于物华公司),研究开发并生产了一批永磁功能器件和永磁材料,目前为一汽大众配套生产永磁磁性材料。
科研现状:
目前我们正承担国家自然科学基金项目和吉林省科委项目,主要从事稀土永磁材料及相关化合物的磁性、氧化物巨磁电阻效应的研究。研究现状:
①纳米晶稀土永磁材料的研究:纳米晶永磁体是目前永磁材料研究的一个主要方向。目前进行的单相纳米晶稀土永磁材料磁滞回线的微磁学研究把前人的定性计算拟合(矫顽力误差~100%)提高到定量计算拟合的档次(矫顽力误差~10%)。已经做到定量计算拟合磁滞回线随晶粒大小和温度的关系。
②新型稀土-过渡族金属间化合物的探索:与北京物理所磁学国家重点实验室合作发现了新型具有高饱和磁化强度、高居里温度和强单轴磁各向异性的3:29型稀土-钴化合物。
③稀土氧化物巨磁电阻效应的研究。 磁现象是自然界中普遍存在的现象,磁现象的研究在过去得到了飞速的发展。二十世纪以来,从1902年的洛伦兹和塞曼因磁场对辐射的影响的研究,到1998年崔琪等因二次量子化霍尔效应,至少有24次诺贝尔物理学奖得主在磁学领域作出过杰出的贡献。目前磁学已经成为物理学的重要组成部分。磁学的发展使得现在无论是电力、电子、通信与信息技术,还是空间技术、计算机技术、生物医学,乃至家用电器,磁学和磁性材料都是不可缺少的重要部分。
元素周期表中的镧系元素(14个),加上化学性质相似的Sc和Y共17个元素,统称为稀土元素。稀土元素的特点是4f壳层的电子未充满,具有大的原子磁矩,很强的自旋轨道耦合等特性,与其它元素结合形成的化合物表现出十分丰富的光、电、磁学性能,被广泛应用在稀土光学材料、稀土磁性材料、稀土储氢材料及稀土催化材料等中,是许多高新技术材料中不可替代的关键元素。另外稀土化合物的各种物理性质(导电性(如超导电性,磁电阻效应),磁性(如磁各向异性,磁有序性等))的研究也一直是凝聚态物理基础研究的主流。因此有关稀土化合物的研究近年来一直是凝聚态物理的研究热点。我国的稀土资源相当丰富,大约占世界已探明储量的80%,而且品种全,质量高。为了发挥我国的稀土资源的优势,将资源优势转化为产业优势和经济优势,国家十分重视稀土资源的开发。开发和发展稀土功能材料是稀土资源高值化的重要途径。稀土磁性材料是一类重要的稀土功能材料,包括:稀土永磁材料、氧化物巨磁电阻材料、稀土大磁致伸缩材料、稀土磁制冷材料等。
作为一种重要的功能磁性材料,以Nd-Fe-B为代表性的稀土永磁材料已被广泛应用于能源、交通、机械、医疗、计算机、家电等领域,深入国民经济的方方面面,其产量与用量已成为衡量一个国家综合国力与国民经济发展水平的重要标志。 无线电物理采用近代物理学和电子信息科学的基础理论、方法及实验手段,研究电磁场和波及其物质相互作用的基础规律,据以开发新型的电子器件和系统,发展信息传输和处理的新理论、新方法和新技术并在电子系统中推广应用。现代许多高新技术:如电子计算机技术、量子电子学、光电子学、超导电子学,以及量子信息技术等无一不与无线电物理密切相关,并以之为基础,或即属于其研究范畴。当今高新科技的发展已促进电子信息科学的研究从简单物质到复杂系统,从定性解到定量解,从线性问题到非线性问题,从正向研究到逆向反演的转化,而且出现了电子信息科学技术、应用物理等不同学科的广泛交叉和应用。形成了众多交叉学科和高科技的应用基础。同时,又促进了物理学基础理论的深入发展。
电子计算机就是在无线电电子学和物理学的基础上发展起来的,如今电子计算机的发展已经历了四代,即电子管计算机,晶体管计算机,集成电路计算机,大规模、超大规模集成电路计算机等。计算机的更新换代得益于电子元器件的发展,是建立在物理学的基础之上,是以电子在真空中,在半导体材料中运动规律的认识突破为前提。一台电子计算机就是一个物理系统,计算过程是这个物理系统的一种时间演化。
在计算机的发展中,小型化和高度集成化是一个重要目标,如今芯片上线宽已达亚微米乃至纳米量级,集成度为11x11mm2芯片上集成几千万个元件。再进一步缩小芯片上元件的尺寸,当其接近原子量级尺寸时,电子运动的规律只能用量子力学理论来描述,电子的波动性成为其主要特征。这意味着微电子技术将面临一场革命。量子器件将被发明,量子计算理论将被提出,量子计算机将产生。量子计算机作为一种新的计算机,不仅仅是在现有计算机基础上向前迈进了一步,而且使整个计算的概念焕然一新,量子计算的思想对物理学的基础也有深远意义。量子器件及量子计算机的研究是跨世纪工程,它涉及物理学,计算机科学,数字等诸多学科,已成为当今世界研究的热点。
物理学的发展为计算手段的革命提供了物质基础,计算机的出现又彻底改变了物理实验的面貌,带来了新的物理学.新的物理学是立足于实验、理论和计算三大支柱之上。面向二十一世纪的物理学工作者,不能仅限于享用现有计算机资源,必须发挥创造性,自行设计专用计算机,以解决物理实验中数据采集和处理问题。方能深入探索过去无法想象的复杂现象的本质。这就要求物理学工作者即要有扎实的物理基础,又要精通电子计算机。
随着科学技术的发展,无线电物理的研究领域也在不断拓展,计算机物理就是其中之一。本专业侧重于计算机物理方向的研究。 本方向主要从事磁学量的测试计量方法研究和电磁信号转换以及磁测量仪器、仪表的开发研制, 磁测量技术在航空、汽车、石油及各个领域的应用研究。汽车电子设备及仪器仪表,各种磁传感器和换能器在石油、汽车工业及其他方面的应用开发研究;磁性参数的检测方法研究及仪器的研制;各种磁参数测量器具的开发研制; 弱信号的检测方法研究等。
每年平均申请科研项目4项,每年平均科研经费80万元,获得专利10余项,在各类刊物发表科研论文20篇, 本研究集体研制成功的JDM-1型振动样品磁强计获国家科技进步奖, 近几年的科研成果在该研究方向处于国内领先地位 ,有些方面的工作(如:磁性材料综合测试系统、大功率电磁铁用稳流电源等)达到国际先进水平。先后有十几项科研成果被有关部门采用。我们的科研工作紧紧围绕我国的工农业生产、科研和教学的具体实际需要来开展,大部分科研项目来自于有关的生产单位、科研院所和大专院校,科研成果解决了很多具体的实际问题,提高生产和科研水平。有些仪器设备的性能价格比优于国外的同类产品,被国内很多用户所采用,产生了较好的社会和经济效益。我们自己研制成功的《可变强场振动磁强计》,已列为世界银行贷款招标目录,并已中标, 已有很多单位订购,可为国家节约大量的外汇。
每年招收研究生12人 本科生 30人, 两年内本学科获得博士学位授予权 。 本学科研究粒子(重子、介子、轻子、规范粒子和夸克等)和原子核的性质、结构、相互作用及运动规律,探索物质世界更深层次的结构和更基本的运动规律。从根本意义上讲,粒子物理和核物理的研究处于整个物理学的最前沿,他们涉及从最微观领域的规律到天体的形成与演化的规律。
粒子物理与核物理专业的前身是吉林大学原子核物理专业,它创建于1958年,从建立专业初期到文化大革命前,在刘运祚主任的领导下先后建成β谱、γ谱、中子物理、加速器、核电子实验室,为专业教学和科研打下了坚实基础。又经过多年的发展,该学科已形成了核结构实验研究、核技术应用研究、核数据评价以及穆斯堡尔谱学四个相对独立的研究方向。本学科具有一支整体力量雄厚、年龄和知识结构合理的学术梯队,并且培养了一批在本学科内具有一定影响的学术带头人。

2. 左手材料是什么东西

一、左手材料——源于上世纪60年代科学家的假想

本世纪以来,一种被称为“左手材料”的人工复合材料在固体物理、材料科学、光学和应用电磁学领域内开始获得愈来愈广泛的青睐,对其的研究正呈现迅速发展之势,而它的出现却是源于上世纪60年代前苏联科学家的假想。

物理学中,介电常数ε和磁导率μ是描述均匀媒质中电磁场性质的最基本的两个物理量。在已知的物质世界中,对于电介质而言,介电常数ε和磁导率μ都为正值,电场、磁场和波矢三者构成右手关系,这样的物质被称为右手材料(right-handed materials,RHM)。这种右手规则一直以来被认为是物质世界的常规,但这一常规却在上世纪60年代开始遭遇颠覆性的挑战。1967年,前苏联物理学家Veselago在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系。他称这种假想的物质为左手材料(left-handed materials,LHM),同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如光的负折射、负的切连科夫效应、反多普勒效应等等。这篇论文引起了一位英国人的关注,1968年被译成英文重新发表在另一个前苏联物理类学术刊物上。但几乎无人意识到,材料世界从此翻开新的一页。

由于左手材料的显著特点是它的介电常数和磁导率都是负数,所以有人也称之为“双负介质(材料)”,通常也被称为“负折射系数材料”,或简称“负材料”。

二、左手材料——本世纪初的突破引发人们无限遐想

左手材料的研究发展并不一帆风顺。在这一具有颠覆性的概念被提出后的三十年里,尽管它有很多新奇的性质,但由于只是停留在理论上,而在自然界中并未发现实际的左手材料,所以,这一怪诞的假设并没有立刻被人接受,而是处于几乎无人理睬的境地,直到时光将近本世纪时才开始出现转机。原因在于英国科学家Pendry等人在1998~1999年提出了一种巧妙的设计结构可以实现负的介电系数与负的磁导率,从此以后,人们开始对这种材料投入了越来越多的兴趣。2001年的突破,使左手材料的研究在世界上渐渐呈现旋风之势。

2001年,美国加州大学San Diego分校的David Smith等物理学家根据Pendry等人的建议,利用以铜为主的复合材料首次制造出在微波波段具有负介电常数、负磁导率的物质,他们使一束微波射入铜环和铜线构成的人工介质,微波以负角度偏转,从而证明了左手材料的存在。

2002年7月,瑞士ETHZ实验室的科学家们宣布制造出三维的左手材料,这将可能对电子通讯业产生重大影响,相关研究成果也发表在当月的美国《应用物理快报》上。

2002年底,麻省理工学院孔金瓯教授从理论上证明了左手材料存在的合理性,并称这种人工介质可用来制造高指向性的天线、聚焦微波波束、实现“完美透镜”、用于电磁波隐身等等。左手材料的前景开始引发学术界、产业界尤其是军方的无限遐想。

2003年是左手材料研究获得多项突破的一年。美国西雅图 Boeing Phantom Works 的C. Parazzoli 与加拿大University of Toronto电机系的G. Eleftheriades所领导的两组研究人员在实验中直接观测到了负折射定律;Iowa State University的S. Foteinopoulou也发表了利用光子晶体做为介质的左手物质理论仿真结果;美国麻省理工学院的E.Cubukcu 和K.Aydin 在《自然》杂志发表文章,描述了电磁波在两维光子晶体中的负折射现象的实验结果。基于科学家们的多项发现,左手材料的研制赫然进入了美国《科学》杂志评出的2003年度全球十大科学进展,引起全球瞩目。

2004年,国际学术界开始出现上海科学家的身影。“973”光子晶体项目首席科学家、复旦大学的资剑教授领导的研究小组经过两年的研究与巧妙设计,利用水的表面波散射成功实现了左手介质超平面成像实验,论文发表于著名的《美国物理评论》杂志上,即刻引起学术界的高度关注,被推荐作为《自然》杂志焦点新闻之一。同济大学波耳固体物理研究所以陈鸿教授为首的研究小组从2001年开始对左手材料展开研究,经过两年的研究,在基础理论和材料的制备与表征方面取得了重大进展,成果在国际物理学著名刊物上发表,2004年在国际微波与毫米波技术大会上作大会报告,并将在2005年日本召开的国际微波与光学技术研讨会上作邀请报告。

左手材料在本世纪初已迅速成为科学界的研究热点。据不完全统计,在国际主要学术刊物上,2000年与2001年所发表的关于左手征材料的研究论文数量分别是13篇与17篇,2002年上升至60篇,2003年上升到100篇以上。

三、左手材料——制造的实现孕育其巨大的应用前景

左手材料的巨大应用前景源于它的制造实现。Pendry在2000年就曾建议制作“超级透镜”(也称“理想棱镜”)以实现左手材料的应用,这一建议在2004年被变成了现实,科学家利用左手材料已经成功制造出平板微波透镜。2004年2月,俄罗斯莫斯科理论与应用电磁学研究所的物理学家宣布他们研制成功一种具有超级分辨率的镜片,但是他们的技术要求被观察的物体几乎接触到镜片,这一前提使其在实际应用中难以操作。同年,加拿大多伦多大学的科学家制造出一种左手镜片,其工作原理与具有微波波长的射线有关,这种射线在电磁波频谱中的位置紧邻无线电波。两国科学家的研究成果获得科学界的高度赞赏,被美国物理学会评为2004年度国际物理学会最具影响的研究进展。

此外,根据左手材料不同凡响的特性,科学家已预言可以应用于通讯系统以及资料储存媒介的设计上,用来制造更小的移动电话或者是容量更大的储存媒体;等效的负折射媒质电路可以有效减少器件的尺寸,拓宽频带,改善器件的性能。未来,左手材料将会在无线通信的发展中起到不可忽略的作用。

四、左手材料——已被列入我国国家自然科学基金2005年重点项目指南

左手材料的研究已引起我国有关科学界的关注。除上海科学家以外,香港科技大学、中科院物理研究所、南京大学、北京大学、西北工业大学等单位均有科学家先行涉足这一领域的研究。国家自然科学基金委将左手材料和负折射效应的研究列入了2005年重点交叉项目指南中,在数理部和工程与材料学部联合的“准相位匹配研究中的若干前沿课题”主题中将“左手材料相关基础性问题研究”列为主要探索内容之一,在数理部和信息科学部联合的“周期和非周期微结构的新光子学特性”主题中将“周期及非周期微结构中在太赫兹、近红外及可见波段的负折射效应研究”列为主要探索内容之一。同时,基金委信息学部将“异向介质理论与应用基础研究”列入2005年重点项目指南,异向介质即是左手材料的另一个名称。

目前国内(包括上海)开展左手材料与负折射效应研究的主要单位的概况如下:

中科院物理所:该所的磁学国家重点实验室广泛开展新型磁性功能材料的探索和研究,研究和探索各种新型磁性材料,如铁磁性形状记忆合金,各种高频(直到10-100G范围)具有高磁导率,低损耗(如DC-DC convertor材料和左手材料)等;该所的微加工实验室在低维人工结构制作与应用研究方面重点开展了二维不同结构光子晶体与左手材料、超导量子结构与器件等的研究。

香港科技大学:该校的纳米科技研究所所长陈子亭教授是国际知名的凝聚态物理与光子晶体理论研究专家,主要从事光子晶体与左手材料方面的研究。

南京大学:该校电子科学与工程系的冯一军教授主要从事电磁场与微波技术,新型人工电磁材料及微波器件等研究,目前承担新型人工电磁介质的理论与应用研究(国家重点基础研究发展计划973项目)和左手人工电磁材料和微波器件(教育部博士点基金项目)。

同济大学:波耳固体物理研究所的陈鸿教授、张冶文教授等人在左手材料与负折射效应的基础理论、表征手段和器件应用等方面已取得突破。

复旦大学:以资剑教授(“973”项目首席科学家)、周磊教授等为首,在左手材料超平面成像、表征与器件应用(微波天线)等方面已取得重大进展,目前正与同济大学、华东师范大学、中科院上海微系统所、中科院上海技术物理所、中科院物理研究所、南京大学、美国UCLC和AMES等研究机构开展这一领域的合作研究。该校的理论物理、凝聚态物理和光学三个专业学科均为国家重点学科和博士点。

上海理工大学:以光学与电子信息工程学院庄松林院士为首。庄院士长期从事应用光学、光学工程和光电子学的研究,他设计了百余种光学系统及仪器,是国内率先开展光学系统CAD的研究者;在复物体的位相恢复研究中提出多种光学方法,开创了该领域研究的新方向;所研制的CdSe硒化镉液晶光阀达到了当时国际先进水平。

热点内容
关西国际大学老师 发布:2025-06-23 12:41:11 浏览:914
大学里没编制的老师 发布:2025-06-23 12:34:25 浏览:571
美国大学作弊教育机构 发布:2025-06-23 12:02:05 浏览:514
中铁三局桥隧公司本科生待遇如何 发布:2025-06-23 12:01:23 浏览:686
西华大学2012年各专业录取分数线 发布:2025-06-23 11:42:30 浏览:378
大专生和本科生的工资 发布:2025-06-23 11:40:59 浏览:80
2016优秀本科生 发布:2025-06-23 11:40:54 浏览:126
大学生有用的证书 发布:2025-06-23 11:28:45 浏览:529
北大2013年招了多少本科生 发布:2025-06-23 11:08:57 浏览:296