大数据大学生
1. 作为大学生在大数据时代怎样成为第一
大数据技术人才在未来定是不可缺少的,学习的大数据技术必然会成为一股长久不息的浪潮版。对于大数据技术的权学习,主要还是服务于企业,为企业创造更大的价值,而自己的价值也是随之增长的。
对于想学习真正大数据技术的人而言,没有什么早晚之分,选择专业的学习方式比较可靠,一般在2W左右。既能学到扎实的理论知识,积累实战经验,还可以具备良好的职业素养,可以让自己尽快掌握技术!
2. 大学生应如何应对大数据时代
数据开始主导一切的时代,大学生不管是不是IT行业,都应该去了解大数据。如回果你是IT行业的大学生,那么答多学一点大数据的知识并没有坏处,而且,大数据未来将于各个行业相互对接,AI技术、云计算也都会和大数据相对接,所以,大学生应该多了解、多学习大数据相关知识,来应对这个时代。
3. 大数据时代给大学生带来哪些机遇1500字
大数据对整个社会产生了不可忽视的影响,教育作为社会的子系统,也受到了它的极大冲击。有人曾说,信息化社会,我们相互之间的距离只是一根网线的问题。随着公开课、E-learning等新学习方式的出现,传统学习方式“遭遇”了挑战。
一、立足当下:当前学习模式概述
学习模式往往受到时代环境的影响,随着科技进步与技术创新,大学学习模式也在不断地向前发展。较为常见的主要有以下几种:
第一,师生授受学习模式。这种学习模式就如同“母鸭带小鸭”,学生把注意力集中在授课教师身上,由教师带着学。学生把教师当作知识的来源,“唯教师,唯书本”,缺乏学习主动性。在大数据时代,大量知识需要自主学习,大量数据背后的潜在意义也需要自主探寻,一味依赖“灌输”则不能适应社会要求。
第二,探究与问题解决模式。这种模式往往从一个或多个具有挑战性或有争议的问题开始,然后借助各种媒介资源,由学生自己获取信息、分析信息、确定问题并提供解答,之后吸收他人建议,进行修改最终完成。这种学习模式有利于提升学生的思维能力和问题解决能力,相对第一种模式而言,这种模式对学生的能力和素质有更高的要求。
第三,专题合作学习模式。“学会学习,学会创造,学会合作,学会生存”已成为当下教育的主题。在合作学习模式中,要求学生作为成员参与到学习团队中,完成专题研究或研究项目。这是一个动手实践、自主探索和合作交流的过程,也是有明确责任分工的互助性学习,最终通过团队合作达到课程或项目规定的要求。
二、机遇和挑战:大数据时代对大学生学习模式的双重影响
第一,快速便捷。
期刊文章分类查询,尽在期刊图书馆
大数据时代有快速化的特点,人们的学习不再受时间和地点的限制,随时随处都可以学习,而且可以走在时代的前沿,第一时间了解最新的知识和信息。以往的学习主要是通过书本,但书本学习往往面临时间滞后等方面的限制,会影响学习效果与知识更新。
第二,经济有效。大学生的家庭背景各不相同,家庭环境不好的学生没有能力支付课外培训学习的费用。在大数据时代,很多公开课程都是免费的,只要有学习的时间和需要,经济不再是制约大学生学习的因素。这在某种程度上也促进了区域之间、校际之间、城乡之间以及个人之间的教育公平。
第三,资源共享。大数据时代具有量大、多样化的特点,丰富的学习资源将呈现在学生面前。网络学习拉近了国际、区域和校际之间的距离,所有的学习者在学习资源利用方面拥有同等的权利。一直以来,好的学校是稀缺资源,但在不远的将来,由于在线教育的普及,人人皆可上名校将不再是梦想,教育资源匮乏的问题也将得到一定的缓解。在线教育对个人的重大意义,还不仅仅是教育机会的增加,更是学习方式的改变。
三、与时俱进:大数据时代大学生学习模式的三大转向
1.由被动学习模式向自主学习模式转变。在传统的学习模式中,学生就像嗷嗷待哺的婴儿,等待着教师的喂养,教师是知识的来源,学生处于“被学习”的状态。这种学习方式没有发挥学生的积极性和主动性,在大数据时代是必然被淘汰的。自主学习,又称自我调节学习,由齐莫曼首先提出。自主学习不等于自学,需要有教师的引导,但学生是学习的主体。布鲁纳发现学习理论认为,学生学习的过程就是主动地不断地探索寻找问题答案的过程。大数据时代背景下,学习资源丰富多样,教师和书本不再是知识的唯一来源,学习者只要有需要、动机和行动,随时随处都可以学习。
2.由单一学习模式向融合学习模式转变。传统教学以一种教学模式应对所有的教学问题,传统学习以单一方式应对所有的学习问题。随着时代的发展,融合式学习模式应运而生。融合式学习模式包含了在线学习与线下学习、自主学习与集体学习、课堂学习与自主探究等多种学习方式。融合式学习模式具有以下特点:学习由教师驱动转变为学生驱动;学习的出发点是精确的学习者状态,包括学习者已有的知识结构、学习风格等;学习目标与学习者初始状态的差异,决定了学习模式与学习方法。
3.由知识本位向思维本位转变。知识本位的学习观认为知识是第一性的,获取已有知识结论是其追求的终极目标,学习过程被看成是单一的认知过程。思维本位的学习观不再以知识为学习的唯一目的和终极目标,更重要的是获得思维方式以及能力的提升。大数据时代的知识是海量的、复杂的,耗尽一生也无法穷尽所有知识,学生最需要学习的是有价值导向和问题意识的思考能力,而不仅仅是具体的知识。单纯追求知识的学习是机械的,有可能让人沦为知识的奴隶,成为学习的工具,缺乏人性和人文气息。当代大学生是创新人才的主要来源,形成思维本位的学习观对其创新能力的形成具有重要作用。
总之,大数据时代下大学生学习模式的转变是个复杂过程,这种趋势已经初现端倪,未来的发展更需多方面的合力。
4. 在大数据时代,大学生应该具备什么样的大数据思维
在大数据时代,大学生应该具备的大数据思维如下:
1、利用所有的数据,而不再仅仅依靠部分数据,即不是随机样本,而是全体数据。
2、唯有接受不精确性,才有机会打开一扇新的世界之窗,即不是精确性,而是混杂性。
3、不是所有的事情都必须知道现象背后的原因,而是要让数据自己“发声”,即不是因果关系,而是相关关系。
大数据时代需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

(4)大数据大学生扩展阅读:
大数据思维的其他介绍:
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
另外,大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
5. 大数据专业哪些大学有
北京大学
大数据是一个新的专业,国内首次出现这个专业是在2016年的时候,当时新设这个专业的高校全国只有3所有,其中就有北京大学。
2.对外经济贸易大学
与北大为同一批次开设大数据专业的学校还有对外经贸大学,很多人不知道这所学校是一所211工程大学,所以这个大数据专业应该是办得不错的。
3.中南大学
该校是湖南最好的大学,属于211和985工程学校。是第一批开设大数据与专业的高校。网上的一些排名中将该校的大数据专业排在了全国第一的位置。
4.中国人名大学
人大属于第二批开设大数据专业的高校,具体开设时间是在2017年。人大的这个专业虽然开设只有一两年的时间,但是实力应该是很强的,因为该校的统计学科在国内处于领先地位。
5.复旦大学
复旦大学的大数据专业是在2017年开设的,支撑学科主要涉及到了统计学、计算机科学和数学等学科,应用范围很广,几乎在所有的行业中都可以进行应用。
6.电子科技大学
电子科技大学位于成都,综合实力在全国范围内排前50位,在四川省中排名第2位,在全国电子科技内大学中排名第一。

(5)大数据大学生扩展阅读
数据科学与大数据技术专业,简称数科或大数据,旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。
大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
6. 大学生学大数据有前途吗
大数据专复业本科/专科生在上制学期间,可以获取的基础知识是非常牢靠的,现在很多学校看重理论,所以只要跟着学校的课程走,在课余的时候自己做做项目差不多可以入门大数据行业了。
大数据专业毕业生可以胜任大数据技术开发与应用,大数据运维和云计算等工作,可以去大型互联网公司就业,做前、后端开发、数据分析师、机器学习算法工程师,App开发、智能游戏设计与开发、数据科学家等。
也可以进入各行各业,在银行、电信、电力、交通等企事业单位,政府、信息产业及其他国民经济部门,甚至医疗系统、媒体等单位,依托具体业务,从事大数据分析、大数据应用开发、大数据系统研发、数据可视化等相关工作。毕竟大数据作为一门技术,为具体行业服务。
7. 大学生怎么运用大数据建设社会主义
一、大数据及其特点
大数据目前尚无明确定义。维基网络对大数据的定义是:大数据是指所涉及的数据量规模巨大到无法通过目前主流软件工具,在合理时间内达到截取、管理、处理并整理成为帮助企业经营决策更积极目的的信息【1】。徐子沛在《大数据》一书中将大数据定义为:指那些大小已经超出了传统意义上的尺度,一般的软件工具难以捕捉、存储、管理和分析的数据【2】。《大数据时代》的作者维克·托迈尔·舍恩伯格认为,“大数据是人们在大规模数据的基础上可以做到的事情,而这些事情在小规模数据的基础上是无法完成的。大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”【3】8-9《人民日报》在采访他时,他曾说:“在我看来,大数据是一种价值观、方法论,我们面临的不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。这是一场思维的大变革,更是一个互动的过程——你可以用不同的角度、不同的方式去做大数据,并得到不一样的结果与好处。”【4】据此,笔者认为:大数据是大规模数据中,可以通过有效技术手段快速获取、存储、管理并分析出可以推动社会发展的有价值的数据。
目前普遍认可大数据的四个基本特征,即4V特性:规模大(Volume)、来源广泛且类型多样(Variety)、获取及处理速度快(Velocity)、价值密度低(Value)。
数据规模大(Volume)。现代意义上的“数据”,范畴比信息还要大。进入信息时代,“数据”二字的内涵开始扩大:不仅指代“有根据的数字”,还统指一切保存在电脑中的信息,包括文本、图片、视频等。数据也逐渐成为“数字、文本、图片、视频”等的统称,也即“信息”的代名词。【6】256-257
数据来源广泛、类型多样(Variety)。信息时代,数据的获取途径不仅限于计算,还包括大记录,即人们通过手机、个人电脑、ipad等终端上传到网络的海量数据以及个人存储在手机、个人电脑等终端中的数据。数据的类型也不再局限于原始的计算数据、结构化数据,还包括人们在日常生活中随手记录、保存、上传至网络平台的图片、音频、视频等非结构化数据。
数据获取及处理速度快(Velocity)。数据来源的多样化致使数据日益公开化、社会化,数据获取更为方便、快捷、全面。伴随大数据发展而诞生的数据处理技术使得数据处理速度远远快于传统数据时代,数据处理日益规模化、软件化、智能化。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比,大数据本身的价值密度是相对较低的,需要对海量的数据进行挖掘分析才能得到真正有用的信息,形成用户价值。【5】基于海量数据基础上形成的某一领域或某一特定内容形成的信息,相关性更强、信息更为全面,效果更佳明显,价值高于传统小数据分析得出的结论。
二、依托大数据推动社会主义核心价值观建设的重要性
大数据已经融入到大学生日常生活中,大学生学习、生活、工作无处不体现大数据。一方面,大学生通过互联网获取学习资料、娱乐资讯、工作模板,成为大数据的享用者;另一方面,大学生搜索、下载学习资料留下数据痕迹,在微博等社交网络平台发表状态、上传生活照片以及工作过程中通过网络发布通知、活动内容,成为大数据的贡献者。大数据与大学生息息相关,透过大学生可以了解学生的思想动态,亦可推动社会主义核心价值观建设。
(一)大数据为社会主义核心价值观建设提供良好的环境。
徐子沛在《数据之巅:大数据革命,历史、现实与未来》中提到一个案例:2013年7月,有报道称,华东师范大学的一位女生收到校方的短信:“同学你好,发现你上个月餐饮消费较少,不知是否有经济困难?”这条温暖的短信也要归功于数据挖掘:校方通过挖掘校园饭卡的消费数据,发现其每顿的餐费都偏低,于是发出了关心的询问,但随后发现这是一个美丽的错误——该女生其实是在减肥。【6】275这个案例说明可以通过大数据了解实时了解学生状态,在当前东西方价值观激烈碰撞的环境下,通过分析数据可以了解并掌握学生思想动态,做到早发现、早处理,对于为社会主义核心价值观建设提供良好的环境有极为重要的意义。
(二)大数据为社会主义核心价值观建设提供更为行之有效的方法。
价值观教育并非一成不变、形式单一,目前高校社会主义核心价值观教育方式主要有课堂教学、主题班会、高校讲座、社会实践以及网络自主获取等形式。那么,这些方式哪些是学生更喜闻乐见、接受主动性更强的方式?有没有尚未发掘的、学生潜意识中更易于接受的价值观教育方式?以课堂教学为例,学生是更倾向于教师讲课学生听的形式还是互动教学形式?如果把视频教学纳入到课堂教学中,那么视频内容是什么样的,多长的视频最优化,以何种形式展现,等等,都是值得探讨的问题。问卷调查、抽样调查等方式获取的数据量小、不够全面、不完全具有代表性,且学生填写调查问卷具有自我意识,问卷结果未必是学生真实想法。大数据是通过高校大学生在网络上发布海量资讯中获取,如学生通过QQ、微信、飞信等沟通软件,人人网、新浪微博、大学生在线等网络社交平台以及邮箱、Dropbox等数据共享平台发布的数据。数据更公开、更广泛、更全面、更真实,通过分析得出的结论更具有说服力。通过分析高校大学生思想动态大数据,可以全面、时时了解学生接受价值观教育的趋向性方式。依据不同年级、不同专业、不同高校学生特点,采用不同形式进行价值观教育,真正做到“因材施教”。
(三)大数据有效掌握高校社会主义核心价值观建设动态情况。
社会主义核心价值观建设是一项艰巨的长期工程,其过程具有动态性、延展性,需要提前、时时把握价值观建设状态、发展动态、发展趋势,随时调整价值观建设的方法、形式、重点。基于网络数据的信息挖掘,不需要逐一调查,成本低廉,更重要的是,这种分析是实时的,没有滞后性【6】268。
三、依托大数据推动社会主义核心价值观建设的途径
(一)树立大数据观念
大数据绝不仅仅是科研的高端产品,大数据存在于我们的日常生活中。沃尔玛通过数据挖掘发现顾客潜在意识——父亲在买尿布时往往会顺便买啤酒——捆绑“啤酒和尿布”提高销量;亚马逊通过数据挖掘——分析顾客的购买规律——“预判发货”,即在网购时,顾客还没有下单,亚马逊就将包裹寄出;奈飞公司利用客户的网上点击记录,预测其喜欢观看的内容,实现精准营销。
在高校中,数据和数据分析的价值更是随处可以得到体现,高校思想政治教育工作已经具备了大数据的特征【7】。建设核心价值观,充分发挥大数据的价值,需要高校学生工作者强化大数据意识,提高对数据的敏感意识、前瞻意识,培养数据共享意识、动态意识,数据不是一成不变的,要不断接受新数据、挖掘新信息。根据对数据的分析,个性化推动社会主义核心价值观建设。
(二)建立大数据库
数据是大数据时代社会主义核心价值观建设的基础。建立大数据库的方式有两种:对内,汇总校园内通过高校信息网络中心的数据及学生在各平台发布的信息;对外,搜集政府、社会发布的与核心价值观建设相关的信息。学校电子网络信息、学生交流使用的网络电子平台、校园各单位为方便服务管理而统计保存的各种信息汇总以及校园安全服务网络使用的摄像头、门禁器等产生的信息数据。
(三)培养大数据工作队伍
光有数据没有分析人才,那么数据永远只是一堆数字,没有任何价值。大数据价值密度低的特点要求数据分析者设计能完成特定任务的软件或程序,智能分析海量数据。高校社会主义核心价值观建设工作人员主要以高校学生工作处、思政教师及辅导员为主,需要在这批人员中培养一批思想政治觉悟高、政治理论水平高人员专门从事该项事务,提高他们的大数据意识和大数据处理能力,适应大数据时代社会对大学生数据能力的需求。
