大学生数学建模
『壹』 大学生数学建模比赛参赛人员必须是一个学校的吗
大学生数学建模比赛参赛人员没有规定必须是一个学校,但只有同一个学校的学生才能组成一队。
1、大学生数学建模比赛面向所有大专院校的学生,不限制专业和学校,不是一个学校的学生可以参赛。大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。
2、大学生数学建模比赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加。
3、全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
4、每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。
5、数模竞赛是对实际问题的一种数学表述。是关于部分现实世界为某种目的的一个抽象的简化的数学结构。是对于一个特定的对象为了一个特定目标,根据特有的内在规律做出一些必要的简化假设,运用适当的数学工具得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。
『贰』 怎样准备全国大学生数学建模竞赛
以我的参赛经历:抄
首先,要袭学好高等数学(数学分析)、线性代数、概率论,这三门课在大一、二分别会开课,(这里的学好是会较为熟练的计算书上习题即可,建模比赛时真正的问题不是复杂的计算理论,而是数学软件的基础和创新能力和论文水平)。
其次,掌握软件Matlab(数值计算功能非常强大)(薛定宇的书《高等应用数学问题Matlab求解》 讲得很好)和Maple(符号运算很强大,简单学一下),
还可以看看spss软件(主要用于统计分析)。 (这里你无法熟练使用所有函数,但一定要做到能在很短时间内用互联网和“help”查找需要的函数,比赛时很重要!!!!)
最后,你要考虑你比赛时的团队组成,找一些优势不同的。括号里是我们队的组合(有一个会写论文且创新性极强的(好像是我)负责提出模型框架和写论文;有一个计算软件极强的,可以将提出的框架进行计算;另一个人要理智检测出前两个人的细小错误)。切记切记!!
参考书目:薛定宇的书《高等应用数学问题Matlab求解》;姜启源的《数学模型》其他软件的书可以问一下教数学的老师,他们都用。
『叁』 大学生数学建模如何选题
我参加过两次,都当队长的,选题首先看你队伍里面成员专业,物理,化学,生回物,建筑,等等答,可以优先考虑相关主题的题目。没有擅长统计数据处理的人在的话,可以考虑避开大数据量的题目,反之可以优先。没有会用Matlab、lingo、C的队员的话,注意避开最优化方案设计、调度方案设计以及计算繁杂手工不可能实现的题目(不过说实话队里没人懂编程基本已经寸步难行了)。要是队伍里没有任何人有突出特长,那最好做最有开放性,最让你不能确定要你具体做什么东西的题(有的新手队伍往往去碰看起来最简单明了的题,结果肯定是什么奖都拿不了)。
上面是原则,除此之外具体选题时候记得花一两个钟头对所有可以选的题搜集资料,大家讨论一下,再确定,不要上手就开始闷头钻研。还有切忌中途换题,切忌兵分两路同时做两个题目。
『肆』 全国大学生数学建模大赛需要学习什么软件啊
软件方面:
1、 C/C++/JAVA/BASIC。随便会一种就可以,C的算法效率绝对比MATLAB高出很多,所以一版般的算法还是用C实现权吧。
2、 MATLAB。很无敌的数学软件,不多介绍了,最好能掌握神经网络工具箱和遗传算法工具箱的使用方法。算法的话,它可以实现的的C/C++也可以,用什么就看个人喜好了。
3、 LINGO。很无敌的规划模型的求解软件,对于离散模型来说,这个必须掌握。别忘记求解的时候在“全局最优”复选框前打钩,不然结果可能是局部最优。(LingoàOptionsàGlobal Solverà Use Global Solver)
『伍』 大学生数学建模比赛有哪些
国内就是全国数学建模大赛
全国大学生数学建模竞赛创办于年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2015年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡和美国的1326所院校、28665个队(其中本科组25646队、专科组3019队)、近86000名大学生报名参加本项竞赛。
Ⅰ、概念
简单地说:数模竞赛就是对实际问题的一种数学表述。具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
Ⅱ、由来
1985年在美国出现了一种叫做MCM的一年一度大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The William Lowell Putnam mathematical Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。
中国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。数学模型竞赛与通常的数学竞赛不同,它来自实际问题或有明确的实际背景。它的宗旨是培养大学生用数学方法解决实际问题的意识和能力,整个赛事是完成一篇包括问题的阐述分析,模型的假设和建立,计算结果及讨论的论文。通过训练和比赛,同学们不仅用数学方法解决实际问题的意识和能力有很大提高,而且在团结合作发挥集体力量攻关,以及撰写科技论文等方面将都会得到十分有益的锻炼。[6]
Ⅲ、方法引
一、机理分析法 从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法 从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2… n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法
1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
① 离散系统仿真--有一组状态变量。
② 连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)
Ⅳ、题型
赛题题型结构形式有三个基本组成部分:
一、实际问题背景
1. 涉及面宽--有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。
2. 一般都有一个比较确切的现实问题。
二、若干假设条件 有如下几种情况:
1. 只有过程、规则等定性假设,无具体定量数据;
2. 给出若干实测或统计数据;
3. 给出若干参数或图形;
4. 蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
三、要求回答的问题 往往有几个问题(一般不是唯一答案):
1. 比较确定性的答案(基本答案);
2. 更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。
Ⅴ、研究生数模竞赛
提交一篇论文,基本内容和格式大致分三大部分:
一、标题、摘要部分:
1.题目--写出较确切的题目(不能只写A题、B题)。
2.摘要--200-300字,包括模型的主要特点、建模方法和主要结果。
3.内容较多时最好有个目录。
二、中心部分:
1.问题提出,问题分析。
2.模型建立:①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型); ③模型求解; ④模型性质;
3.计算方法设计和计算机实现。
4.结果分析与检验。
5.讨论--模型的优缺点,改进方向,推广新思想。
6.参考文献--注意格式。
三、附录部分:
1.计算程序,框图。
2.各种求解演算过程,计算中间结果。
3.各种图形、表格。
『陆』 全国大学生数学建模竞赛,一般都有哪些问题
全国大学生数学建模竞赛肇始于1992年,一年一届,是目前全国规模最大、含金量最高的数学建模竞赛,也是世界上规模最大的数学建模竞赛。2020年,共有来自中国、美国、英国、马来西亚的1470所院校/校区的45680支队伍(本科41826队、专科3854队),共计13万多人报名参加比赛。
第三部分通常会有好几个需要回答的问题,通常有些问题需要给出确定性的答案,也就是根据模型得出的数学结果;后面则会有发散性的问题,要求给出优化方案等。
『柒』 全国大学生数学建模竞赛对大学生意味着什么
全国大学生数学建模竞赛是一个每年都会举办的数学竞赛,竞赛宗旨是具有创新意识、团队精神,重在参与,公平竞争。这场竞赛每年报名的大学生也数不胜数,一方面这是对大学生思维能力的展现,另一方面这种全国类的比赛对自己百利而无一害,增长见识就不说了,光是看到一同参加的人的出色表现都会让你心生斗志。而且这场竞赛的背景也是数学建模的广泛应用,现在的运输、管理、物流等很多方面都离不开数学建模,它会让问题更容易化,提出最优方案,这也是数学建模的根本所在。
而且学生们的思维通过此次竞赛会散发出来,学生们会了解到原来有的答案根本不局限于固定的思维当中,相反思想越开放,越有可能接近最优解,这也是锻炼了大学生们的逻辑方式。而且竞赛中如果有出色的表现,对以后找工作或出国留学都会起到一定的帮助,所以很多大学生们非常积极参加数学建模竞赛,也是想挑战一下自己,在我看来这是一件极好的事。
『捌』 关于全国大学生数学建模大赛
“全国大学生数学建模大赛”全称为“高教社杯全国大学生数学建模竞赛”
全国大学生数学建模大赛竞赛每年举办一次,每年的竞赛时间为9月的第三个星期五上午8时至下一个星期一上午8时。
报名时间:从大赛的通知文稿发出后,就可以报名了,报名截止时间一般在开始比赛的前7-10天。(2008年的参赛截止时间为:2008-9-12)
报名方式:如果有分赛区(每个赛区应至少有6所院校的20个队参加),就联系分赛区报名,没有分赛区,则直接向主委会报名。
大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组)。
竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区应至少有6所院校的20个队参加。邻近的省可以合并成立一个赛区。每个赛区建立组织委员会(以下简称赛区组委会),负责本赛区的宣传发动及报名、监督竞赛纪律和组织评阅答卷等工作。未成立赛区的各省院校的参赛队可直接向全国组委会报名参赛。
考核内容(竞赛内容):
竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
数学建模等大学生赛事的交流平台:
赛才网
以赛识才、以赛育才,专业的赛事宣传和推广平台。
『玖』 准备大学生数学建模需要多久
准备方式:
. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。
2. 在数学建模竞赛中,每个人都有自己的任务,因此每个人都应该明确自己的定位,根据自己的特点选择队友。众所周知,数学建模竞赛题主要是依靠数学和计算机来完成,所以在组队的时候需要优先考虑队中有这方面才能的人。因此在竞赛中有两种人是必需的:一个是对建模很熟悉、对各类算法理论熟悉,在了解问题背景后能建立模型,设计求解算法,一般来说这样的任务对专业没有特别要求,适合各个专业的同学参加,因为这项任务所需要的能力是可以锻炼的,通过平时的学习以及数学建模的培训,大家可以达到一定的水平;另一个是能将算法编制程序予以实现,求得数学问题的解,这项任务对计算机要求比较高,一般适合信息学院或软件学院的学生参加,这点是非常重要的,因为很多队伍都存在建模与求解之间脱节的情况,在比赛中需要建模与求解相互配合,这样才能获得好成绩。第三个人一般要从写作角度考虑,就是主要承担写作任务,从专业方面看有没有特别的要求,当然最好来自不同专业的学生参加,在数学建模中各种背景的问题都会出现,所以由各种不同专业学生组成的团队可以弥补专业知识方面的不足。如果是参加美国大学生数学建模竞赛的,那么英语能力又是必须考虑的,特别要有一个英语写作能力强的同学来担任写作。
3. 最后在选择队员时还有一点非常重要,就是一定要选择和自己志同道合的同学加入自己的队伍。如果两个人合不来,无论各自的能力有多强,在竞赛中把时间浪费在无谓的争论中,也是无法获得好成绩的。这其实也就是前面一直在说的三个人一定要有团队各做精神。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型。然后用通过计算得到的结果来解释实际问题,并接受实际的检验,这个建立数学模型的全过程就称为数学建模。