大学生25题
Ⅰ 你见过什么可以难倒大学生的小学数学题
这是另一道100个人当中只有两个人能解出来的数学题,题目的要求还是很简单的,只是选择8个数字的其中3个后,使其3个数加起来的和为30即可。
Ⅱ 大学生都会做错的算术题 答对的给分
我认为是100元。
相当于王老板用18元的礼品和82元换了一个100元假钞。
假钞没有价值,看作是0元。
即 王老板用18元的礼品和82元换了0元。
呵呵
说的不一定对,不要见怪啊!!
Ⅲ 难倒大学生的小学数学题:一小孩拿100元假币去商店买东西,此商品进价21元,售价25元,老板找不开
96元。
Ⅳ 一道智力题,难倒大学生!
我见过一道类似的题,后面有解析,希望能给你帮助.
鬼谷考徒
孙膑,庞涓都是鬼谷子的徒弟;一天鬼出了这道题目:他从2到99中选出两个不同的整数,把积告诉孙,把和告诉庞。
庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。
孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。
庞说:既然你这么说,我现在也知道这两个数字是什么了。
问这两个数字是什么?为什么?
解题思路1:
假设数为 X,Y;和为X+Y=A,积为X*Y=B.
根据庞第一次所说的:“我肯定你也不知道这两个数是什么”。由此知道,X+Y不是两个素数之和。那么A的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,95,97.
我们再计算一下B的可能值:
和是11能得到的积:18,24,28,30
和是17能得到的积:30,42,52,60,66,70,72
和是23能得到的积:42,60...
和是27能得到的积:50,72...
和是29能得到的积:...
和是35能得到的积:66...
和是37能得到的积:70...
......
我们可以得出可能的B为....,当然了,有些数(30=5*6=2*15)出现不止一次。
这时候,孙依据自己的数比较计算后,“我现在能够确定这两个数字了。”
我们依据这句话,和我们算出来的B的集合,我们又可以把计算出来的B的集合删除一些重复数。
和是11能得到的积:18,24,28
和是17能得到的积:52
和是23能得到的积:42,76...
和是27能得到的积:50,92...
和是29能得到的积:54,78...
和是35能得到的积:96,124...
和是37能得到的积:,...
......
因为庞说:“既然你这么说,我现在也知道这两个数字是什么了。”那么由和得出的积也必须是唯一的,由上面知道只有一行是剩下一个数的,那就是和17积52。 那么X和Y分别是4和13。
解题思路2:
说话依次编号为S1,P1,S2。
设这两个数为x,y,和为s,积为p。
由S1,P不知道这两个数,所以s不可能是两个质数相加得来的,而且s<=41,因为如果s>41,那么P拿到41×(s-41)必定可以猜出s了(关于这一点,参考老马的证明,这一点很巧妙,可以省不少事情)。所以和s为{11,17,23,27,29,35,37,41}之一,设这个集合为A。
1).假设和是11。11=2+9=3+8=4+7=5+6,如果P拿到18,18=3×6=2×9,只有2+9落在集合A中,所以P可以说出P1,但是这时候S能不能说出S2呢?我们来看,如果P拿到24,24=6×4=3×8=2×12,P同样可以说P1,因为至少有两种情况P都可以说出P1,所以A就无法断言S2,所以和不是11。
2).假设和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明显,由于P拿到4×13可以断言P1,而其他情况,P都无法断言P1,所以和是17。
3).假设和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱们先考虑含有2的n次幂或者含有大质数的那些组,如果P拿到4×19或7×16都可以断言P1,所以和不是23。
4).假设和是27。如果P拿到8×19或4×23都可以断言P1,所以和不是27。
5).假设和是29。如果P拿到13×16或7×22都可以断言P1,所以和不是29。
6).假设和是35。如果P拿到16×19或4×31都可以断言P1,所以和不是35。
7).假设和是37。如果P拿到8×29或11×26都可以断言P1,所以和不是37。
8).假设和是41。如果B拿到4×37或8×33,都可以断言P1,所以和不是41。
综上所述:这两个数是4和13。
解题思路3:
孙庞猜数的手算推理解法
1)按照庞的第一句话的后半部分,我们肯定庞知道的和S肯定不会大于54。
因为如果和54<S<54+99,那么S可以写为S=53+a,a<=99。如果鬼谷子选的两个数字
恰好是53和a,那么孙知道的积M就是M=53*a,于是孙知道,这原来两个数中至少有
一个含有53这个因子,因为53是个素数。可是小于100,又有53这个因子的,只能是
53本身,所以孙就可以只凭这个积53*a推断出这两个数术53和a。所以如果庞知道的
S大于54的话,他就不敢排除两个数是53和a这种可能,也就不敢贸然说“但是我肯定
你也不知道这两个数是什么”这种话。
如果53+99<S<=97+99,那么S可以写为S=97+a,同以上推理,也不可能。
如果S=98+99,那么庞可以立刻判断出,这两个数只能是98和99,而且M只能是98*99,
孙也可以知道这两个术,所以显然不可能。
2)按照庞的第一句话的后半部分,我们还可以肯定庞知道的和S不可以表示为两个素数的和。
否则的话,如果鬼谷子选的两个数字恰好就是这两个素数,那么孙知道积M后,就可以得到唯一的素因子分解,判断出结果。于是庞还是不敢说“但是我肯定你也不知道这两个数是什么”这种话。
根据哥德巴赫猜想,任何大于4的偶数都可以表示为两个素数之和,对54以下的偶数,猜想肯定被验证过,所以S一定不能是偶数。
另外型为S=2+p的奇数,其中p是奇素数的那些S也同样要排除掉。
还有S=51也要排除掉,因为51=17+2*17。如果鬼谷子选的是(17,2*17),那么孙知道
的将是M=2*17*17,他对鬼谷子原来的两数的猜想只能是(17,2*17)。(为什么51要单独拿出来,要看下面的推理)
3)于是我们得到S必须在以下数中:
11 17 23 27 29 35 37 41 47 53
另外一方面,只要庞的S在上面这些数中,他就可以说“但是我肯定你也不知道这两个
数是什么”,因为这些数无论怎么拆成两数和,都至少有一个数是合数(必是一偶一
奇,如果偶的那个大于2,它就是合数,如果偶的那个等于2,我们上面的步骤已经保
证奇的那个是合数),也就是S只能拆成
a) S=2+a*b 或 b) S=a+2^n*b
这两个样子,其中a和b都是奇数,n>=1。
那么(下面我说的“至少两组数”中的两组数都不相同,而且的确存在(也就是那些
数都小于100)的理由我就不写了,根据条件很显然)
a)或者孙的M=2*a*b,孙就会在(2*a,b)和(2,a*b)至少两组数里拿不定主意(a和
b都是奇数,所以这两组数一定不同);
b)或者M=2^n*a*b,
如果n>1,那么孙就会在(2^(n-1)*a,2*b)和(2^n*a,b)至少两组数里拿不定主意;
如果n=1,而且a不等于b,那么孙就会在(2*a,b)和(2b,a)至少两组数里拿不定主
意;
如果n=1,而且a等于b,这意味着S=a+2*a=3a,所以S一定是3的倍数,我们只要
讨论S=27就可以了。27如果被拆成了S=9+18,那么孙拿到的M=9*18,他就会在
(9,18)和(27,6)至少两组数里拿不定主意。
(上面对51的讨论就是从这最后一种情况的讨论发现的,我不知道上面的论证是否
过分烦琐了,但是看看51这个“特例”,我怀疑严格的论证可能就得这么烦)
现在我们知道,当且仅当庞得到的和数S在
C={11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
中,他才会说出“我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数
是什么”这句话
孙膑可以和我们得到同样的结论,他还比我们多知道那个M。
4)孙的话“我现在能够确定这两个数字了”表明,他把M分解成素因子后,然后组合成
关于鬼谷子的那两个数的若干个猜想中,有且仅有一个猜想的和在C中。否则的话,他
还是会在多个猜想之间拿不定主意。
庞涓听了孙的话也可以得到和我们一样的结论,他还比我们多知道那个S。
5)庞的话“我现在也知道这两个数字是什么了”表明,他把S拆成两数和后,也得到了
关于鬼谷子的那两个数的若干个猜想,但是在所有这些拆法中,只有一种满足4)里的
条件,否则他不会知道究竟是哪种情况,使得孙膑推断出那两个数来。
于是我们可以排除掉C中那些可以用两种方法表示为S=2^n+p的S,其中n>1,p为素数。
因为如果S=2^n1+p1=2^n2+p2,无论是(2^n1,p1)还是(2^n2,p2)这两种情况,孙膑都
可以由M=2^n1*p1或M=2^n2*p2来断定出正确的结果,因为由M得到的各种两数组合,
只有(2^n,p)这样的组合,两数和才是奇数,从而在C中,于是孙膑就可以宣布自己知道
了是怎么回事,可庞涓却还得为(2^n1,p1)还是(2^n2,p2)这两种情况犯愁。
因为11=4+7=8+3,23=4+19=16+7,27=4+23=16+11,35=4+31=16+19,37=8+29=32+5,
47=4+43=16+31。于是S的可能值只能在
17 29 41 53
中。让我们继续缩小这个表。
29不可能,因为29=2+27=4+25。无论是(2,27)和(4,25),孙膑都可以正确判断出来:
a)如果是(2,27),M=2*27=2*3*3*3,那么孙可以猜的组合是(2,27)(3,18)(6,9),
后面两种对应的S为21和15,都不在C中,故不可能,于是只能是(2,27)。
b)如果是(4,25),M=4*25=2*2*5*5,那么孙可以猜的组合是(2,50)(4,25)(5,20)
(10,10)。只有(4,25)的S才在C中。
可是庞涓却要为孙膑的M到底是2*27还是4*25苦恼。
41不可能,因为41=4+37=10+31。后面推理略。
53不可能,因为53=6+47=16+37。后面推理略。
研究一下17。这下我们得考虑所有17的两数和拆法:
(2,15):那么M=2*15=2*3*5=6*5,而6+5=11也在C中,所以一定不是这个M,否则4)
的条件不能满足,孙“我现在能够确定这两个数字了”的话说不出来。
(3,14):那么M=3*14=2*3*7=2*21,而2+21=23也在C中。后面推理略。
(4,13):那么M=4*13=2*2*13。那么孙可以猜的组合是(2,26)(4,13),只有(4,13)
的和在C中,所以这种情况孙膑可以说4)中的话。
(5,12):那么M=5*12=2*2*3*5=3*20,而3+20=23也在C中。后面推理略。
(6,11):那么M=6*11=2*3*11=2*33,而2+33=35也在C中。后面推理略。
(7,10):那么M=7*10=2*5*7=2*35,而2+35=37也在C中。后面推理略。
(8,9):那么M=8*9=2*2*2*3*3=3*24,而3+24=27也在C中。后面推理略。
于是在S=17时,只有(4,13)这种情况,孙膑才可以猜出那两数是什么,既然如此,庞涓就知道这两个数是什么,说出“我现在也知道这两个数字是什么了”。听了庞涓的话,于是我们也知道,这两数该是(4,13)。
参考答案:
这两个数字是4和13。原因同上。
Ⅳ 谁有大学生心理测试题及答案的
1.选出不同类的一项:A.蛇 B.大树 C.老虎
2.在下列分数中,选出不同类的一项: A.3/5 B.3/7 C.3/9
3.男孩对男子,正如女孩对______.
A.青年 B.孩子 C.夫人 D.姑娘 E.妇女
4.如果笔相对于写字,那么书相对于______.
A.娱乐 B.阅读 C.学文化 D.解除疲劳
5. 马之于马厩,正如人之于______.
A.牛棚 B.马车 C.房屋 D.农场 E.楼房
6. "2 8 14 20 ___" 请写出 "___"处的数字
7. 如果下列四个词可以组成一个正确的句子,就选是,否则选否.
生活 水里 鱼 在 A 是 否
8. 如果下列六个词可以组成一个正确的句子,就选正确,否则选错误
球棒 的 用来 是 棒球 打 A 是 否
9. 动物学家与社会学家对应,正如动物与_____相对
A.人类 B.问题 C.社会 D.社会学
10.如果所有的妇女都有大衣,那么漂亮的妇女会有:
A.给多的大衣 B.时髦的大衣 C.大衣 D.昂贵的大衣
11. "1 3 2 4 6 5 7 ___" 请写出"____"处的数字
12.南之于西北,正如西之于: A.西北 B.东北 C.西南 D.东南
13.找出不同类的一项:A.铁锅 B.小勺 C.米饭 D.碟子
14. "9 7 8 6 7 5 ___" 请写出"___"处的数字
15.找出不同类的一项:A写字台 B.沙发 C.电视 D.桌布
16.右面的图中紧接的图形应是下面哪个:
A B C D
17. 961 (25) 432
932 (___) 731 请写出"___"处的数字
18.选项A.B.C.D.中,哪项该填在 "XOOOOXXOOOXXX" 后面
A.XOO B.OOX C.XOX D.OXX
19.望子成龙的家长往往____苗助长
A.揠 B.堰 C.偃
20.填上空缺的词
金黄的头发 (黄山) 刀山火海
赞美人生 () 卫国战争
21.选出不同类的一项:A.地板 B.壁橱 C.窗户 D.窗帘
22. "1 8 27 ___" 请写出"___"处的数字
23.填上空缺的词
罄竹难书(书法)无法无天
作奸犯科()教学相长
24.在括号内填上一个字,使其与括号前的字组成一个词,同时又与括号后的字也能组成一个词:
款()样
25.填入空缺的字母
B F K Q
26.填入空缺的数字
16 (96) 12 10 () 15
27.找出不同类的一项:
A.斑马 B.军马 C.赛马 D.骏马 E.驸马
28.在括号内填上一个字,使其与括号前的字组成一个词,同时又与括号后的字也能组成一个词:
祭()定
29.在括号内填入一个字,使之既有前一个词的意思,又有后一个词的意思 顶部()震荡
30.填入空缺的数字 65 37 17 ()
31.填入空缺的数字 41 (28) 27 83() 65
32.在abcd四个图形中选出可以填入右边"?"处的一个
33.填上空缺的字母
C F I D H L E J ()
国际标准测试题
第1~9题:请从下面的问题中,选择一个和自己最切合的答案,但要尽可能少选中性答案。
1.我有能力克服各种困难:________
A、是的 B、不一定 C、不是的
2.如果我能到一个新的环境,我要把生活安排得:________
A、和从前相仿 B、不一定 C、和从前不一样
3.一生中,我觉得自已能达到我所预想的目标:________
A、是的 B、不一定 C、不是的
4.不知为什么,有些人总是回避或冷淡我:________
A、不是的 B、不一定 C、是的
5.在大街上,我常常避开我不愿打招呼的人:________
A、从未如此 B、偶尔如此 C、有时如此
6.当我集中精力工作时,假使有人在旁边高谈阔论:________
A、我仍能专心工作 B、介于A、C之间 C、我不能专心且感到愤怒
7.我不论到什么地方,都能清楚地辨别方向:________
A、是的 B、不一定 C、不是的
8.我热爱所学的专业和所从事的工作:________
A、是的 B、不一定 C、不是的
9.气候的变化不会影响我的情绪:________
A、是的 B、介于A、C之间 C、不是的
第10~16题:请如实选答下列问题,将答案填入右边横线处。
10.我从不因流言蜚语而生气:________
A、是的 B、介于A、C之间 C、不是的
11.我善于控制自己的面部表情:________
A、是的 B、不太确定 C、不是的
12.在就寝时,我常常:________
A、极易入睡 B、介于A、C之间 C、不易入睡
13.有人侵扰我时,我:________
A、不露声色 B、介于A、C之间 C、大声抗议,以泄己愤
14.在和人争辨或工作出现失误后,我常常感到震颤,精疲力竭,而不能继续安心工作:______
A、不是的 B、介于A、C之间 C、是的
15.我常常被一些无谓的小事困扰:________
A、不是的 B、介于A、C之间 C、是的
16.我宁愿住在僻静的郊区,也不愿住在嘈杂的市区:________
A、不是的 B、不太确定 C、是的
第17~25题:在下面问题中,每一题请选择一个和自己最切合的答案,同样少选中性答案。
17.我被朋友、同事起过绰号、挖苦过:________
A、从来没有 B、偶尔有过 C、这是常有的事
18.有一种食物使我吃后呕吐:________
A、没有 B、记不清 C、有
19.除去看见的世界外,我的心中没有另外的世界:________
A、没有 B、记不清 C、有
20.我会想到若干年后有什么使自己极为不安的事:________
A、从来没有想过 B、偶尔想到过 C、经常想到
21.我常常觉得自己的家庭对自己不好,但是我又确切地知道他们的确对我好:________
A、否 B、说不清楚 C、是
22.每天我一回家就立刻把门关上:________
A、否 B、不清楚 C、是
23.我坐在小房间里把门关上,但我仍觉得心里不安:________
A、否 B、偶尔是 C、是
24.当一件事需要我作决定时,我常觉得很难:________
A、否 B、偶尔是 C、是
25.我常常用抛硬币、翻纸、抽签之类的游戏来预测凶吉:________
A、否 B、偶尔是 C、是
第26~29题:下面各题,请按实际情况如实回答,仅须回答“是”或“否”即可,在你选择的答案下打“√”。
26.为了工作我早出晚归,早晨起床我常常感到疲惫不堪:
是________ 否________
27.在某种心境下,我会因为困惑陷入空想,将工作搁置下来:
是________ 否________
28.我的神经脆弱,稍有刺激就会使我战栗:
是________ 否________
29.睡梦中,我常常被噩梦惊醒:
是________ 否________
第30~33题:本组测试共4题,每题有5种答案,请选择与自己最切合的答案,在你选择的答案下打“√”。
答案标准如下:
1 2 3 4 5
从不 几乎不 一半时间 大多数时间 总是
30.工作中我愿意挑战艰巨的任务。 1 2 3 4 5
31.我常发现别人好的意愿。 1 2 3 4 5
32.能听取不同的意见,包括对自己的批评。 1 2 3 4 5
33.我时常勉励自己,对未来充满希望。 1 2 3 4 5
参考答案及计分评估:
计分时请按照记分标准,先算出各部分得分,最后将几部分得分相加,得到的那一分值即为你的最终得分。
第1~9题,每回答一个A得6分,回答一个B得3分,回答一个C得0分。计____分。
第10~16题,每回答一个A得5分,回答一个B得2分,回答一个C得0分。计___分。
第17~25题,每回答一个A得5分,回答一个B得2分,回答一个C得0分。计___分。
第26~29题,每回答一个“是”得0分,回答一个“否”得5分。计______分。
第30~33题,从左至右分数分别为1分、2分、3分、4分、5分。计______分。
总计为______分。
Ⅵ 大学生生活常识题
我想应该主要是心理健康、生活健康、还有就是环保节能方面的,不大可能出柴米油盐方面的吧,你可以搜索一下大学生感兴趣和应该掌握的小常识多看看,也可以搜索一下小网络之类的资料。
Ⅶ 难倒大学生的小学数学题目 一小孩拿100元假币去商店买东西,此商品进价21元,售价25元,老板
此题的关键点是看小孩拿走了多钱,拿走的钱就是老板亏的钱: 一件商品进价+找回的钱=21+(100-25)=21+75=96元
Ⅷ 有谁知道龙燕梅的大学生择业效能感量表(25个题目)及具体评分标准啊
您能给我发过来吗?十分感谢邮箱,[email protected]
Ⅸ 第25届全国非物理专业大学生物理竞赛习题
第一问,直接将竖直向下的惯性力引入,注意到惯性力只有a0*Mb有实际效果,而惯性专整体是属Ma+Mb。再加上重力,即可获得加速度
第二问,仍然直接将水平向左的惯性力引入,则桌对B的弹力Nb可知,桌对A的弹力Na仍然为Mag,A所受惯性力提供动力,若使B不动,则A所受惯性力将通过绳子与滑轮传递给B,uNb>a0Ma,解此式,即可。
