三峡大学线性代数答案
⑴ 求这些线性代数题的答案,哪位学过的能否告知一下
关于这些线性代数的答案,我的解答如下:
第一题 二阶行列式直接对角线相乘再相减,然后稍微用我们高中学过的三角函数化简就可以得出答案了。解答过如下:

第七题 两个不同行列的矩阵相乘,这就直接计算就可以了,第一个矩阵A的第一行的各个元素分别乘以第二个矩阵B的第一列的各个元素再相加,矩阵A第二行的乘以矩阵B第二列的,一次类推,然后就可以求出一个结果为两行三列的矩阵了,具体过程我就不写了,纯计算的,太简单了。
第七题 一眼就可以看出矩阵的秩R(A)=2。怎么看出来的呢?简单!你就看矩阵化成最简形的时候(这题本来就是最简形了),数一下看它有多少行全不为0的行数就得了,这题可以直接看出有两行不为0的行,第三行全为0,所以R(A)=2。
⑵ 2011年10月23 线性代数(经管类)答案 自考
04184线性代数(经管类)
1-10BBCCB?DDAD11题0;12题0;13题2;14题2;15题r≤s;16题-1;18题0和5;19题2;20题-y12+y22+y32
恒大教育 9:17:48
04184线性代数(经管类)
一、单选
1-5 BBCCB 6-10 ADDAD
二、填空
11、46 12、0 13、2 14、2 15、r≤s 16、-2 17、(1234)的5次方+k(1111)的7次方 18、(-5,-5,0) 19、2 20、Z1的平方+Z2的平方+Z3的平方
21、|A|=|α,2r2,3r3|=6|α,r2,r3|=18 =>|α,r2,r3|=3 |A-B|=|α-β,r1,2R3|=2|α,r2,r3|-2|β,r2,r3|=2*3-2*2=2
22、[第一排1 1 -1 第二排0 2 2 第三排1 -1 0]X=[第一排1 -2 第二排0 1 第三排-2 -2] X=[第一排-1 -11/6 第二排1 1/6 第三排-1 1/3]
23、线性相关=>r(α1,α2,α3,α4)<4 ∴|α1,α2,α3,α4|=|第一排1 -1 3 -2 第二排0 -2 -1 -4 第三排0 0 -7 0 第四排0 0 p-8 p+10|=0 所以P=-10 r(α1,α2,α3,α4)=3 α1,α2,α3,α4线性无关 ∴α1,α2,α3是一组极大无关组
是这份吗?
⑶ 求线性代数课后习题答案;
|答案是来B
【解析】
题中三个行列源式等于零,
根据特征值的概念,
A的三个特征值分别为
-3/2,-4/3,-5/4
∴|A|=(-3/2)×(-4/3)×(-5/4)
=-5/2
【附注】
(1)|A-λE|=0
则λ是A的特征值
(2)n阶矩阵A的n个特征值依次是λ1,λ2,……,λn
则|A|=λ1×λ2×……×λn
⑷ 线性代数的课后答案
1. 用定义
由行列式的定义, 只有一项不为零: a12a23...a(n-1)n an1 = n!
列标排列的逆序数 = t(2 3 ... n 1) = n-1
所以专 行列式 = (-1)^(n-1) n!.
2. 用性质:
最后一行依次与上一行交换属, 一直交换到第1行, 共交换 n-1 次
所以 D = (-1)^(n-1) *
n 0 0 . . . 0
0 1 0 . . . 0
0 0 2 . . . 0
......................
0 0 0 . . .n-1
这是上三角行列式, 所以
D = (-1)^(n-1) n!.
