当前位置:首页 » 招生排名 » 重庆大学高等数学答案

重庆大学高等数学答案

发布时间: 2023-08-23 01:58:19

⑴ 高等数学第二版上册(工科类专业用)习题答案

高等数学上册
一 填空题(每题2分,共10分)
1. = ;
2. 设f (x)=e-x,则 = ;
3.比较积分的大小: ;
4. 函数 的单调减少区间为 ;
5. 级数 ,当x=0时收敛,当x=2b时发散,则该级数的收敛半径是 ;
二、求不定积分(每小题4分,共16分)
1. ; 2. ; 3. ;
4. 已知 是f (x)的一个原函数,求 .
三、求定积分(每小题4分,共12分)
1. ; 2. ;
3.设 求
四、应用题(每小题5分,共15分)
1.计算由曲线y=x2,x=y2所围图形的面积;
2.由y=x3、x=2、y=0所围成的图形绕x轴旋转,计算所得旋转体的体积.
3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g牛顿/米3 )
五、求下列极限(每题5分,共10分)
1. ;
2. 设函数f (x)在(0,+∞)内可微,且f (x)满足方程 ,求f (x)。
六、判断下列级数的敛散性(每题5分,共15分)
1. ; 2. ; 3. ;
七、求解下列各题(每题5分,共10分)
1. 求幂级数 的收敛域及和函数;
2. 将函数 展开成(x+4)的幂级数。
八、证明题(第一小题5分,第二小题7分,共12分)
1.证明:设f (x)在〔0,1〕上连续且严格单调减少,证明:当0<? <1时,
2. 设有正项级数 ,且 。若级数 收敛,则级数 收敛;若级数 发散,则级数 发散。

高等数学上册试卷B卷
一 填空题(每题2分,共10分)
1. 级数 ,当x=0时收敛,当x=2b时发散,则该级数的收敛半径是 ;
2.设 ,则g(x)= ;
3.比较大小: ;
4. = ;
5. 函数 的单调减少区间为 ;
二、计算下列各题(每小题4分,共28分)
1. ; 2. ; 3. ;
4. ; 5. ;
6.设 求
7.

三、几何应用题(每小题5分,共10分)
1.求曲线 与直线y=x及x=2所围图形的面积。
2.设D是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域,试求D绕x轴旋转而成的旋转体体积V。
四、物理应用题(每小题5分,共10分)
1.设一圆锥形贮水池,深10米,口径20米,盛满水,今用抽水机将水抽尽,问要作多少功?
2.有一矩形闸门,它底边长为10米,高为20米,上底边与水面相齐,计算闸门的一侧所受的水压力。
五、求解下列各题(每题5分,共10分)
1. 已知 是f (x)的一个原函数,求 ;
2. 设函数f (x)在(0,+∞)内可微,且f (x)满足方程 ,求f (x)。

六、判断下列级数的敛散性(每题5分,共15分)
1. ; 2. ; 3. ;
七、求解下列各题(每题5分,共10分)
1. 求幂级数 的收敛域及和函数;
2. 将函数 展开成(x+4)的幂级数。
八、(7分) 设有正项级数 ,且 。若级数 收敛,则级数 收敛;若级数 发散,则级数 发散。

高等数学上册试卷C卷
一 求极限或判断极限是否存在(20分, 每题4分)
1. 2.
3. 4.
5.
二 求导数(20分, 每题4分)
1.求曲面 在点(1,-2, 2)的切平面和法线方程.
2.设 ,其中 具有二阶连续偏导, 求 .
3. 设 , 求 .
4. 设 , 求
5. 设 , 求 和
三 计算下列各题(15分, 每题5分)
1.求曲线 在点(1,-2,1)处的切线与法平面方程。
2.设一带电平板上的电压分布为 试问在点(1,2)处:
(1) 沿哪个方向电压升高最快?速率是多少?
(2) 沿哪个方向电压下降最快?速率是多少?
(3) 沿哪个方向电压没变化?

3.为计算长方形的面积A,今测出其边长分别为:1.732、3.21。若测出的边长值均有3位有效数字,试求出A的值及其绝对误差限,并指出A有几位有效数字。

四 (15分)
1. (8分)设某工厂生产A和B两种产品,产量分别为x和y(单位:千件)。
利润函数为
已知生产这两种产品时,每千件产品均需要消耗某种原料2000千克,现有该原料12000千克,问两种产品各生产多少千件时总利润最大?最大利润是多少?

2.(7分)下表数据是某作物施肥量和产量的实验数据
施肥量(kg/公顷) 0 28 56 84
产量(t/公顷) 10.1 13.2 15.3 17.1
试利用二次插值,计算在施肥量为40kg/公顷时,产量近似值。
五 (15分)
1. (7分) 求通过直线 且垂直平面 的平面方程.
2. (8分) 设函数 由方程 确定, 试判断曲线 在点 附近的凹凸性.
六 证明题(15分)
1.(7分)设

证明 在(0,0)点可微。
2.(8分)设 在 上可导, 且 . 证明: 存在一点 , 使

高等数学下册试卷A卷
一、 填空(共10分,每小题2分)
1.设数项级数 收敛 收敛,则数项级数 ;
2.若级数 ,当x=0时收敛,当x=2b时发散,则该级数的收敛半径是 ;
3.设设 是平面 在第一卦限部分上侧,用第一类曲面积分表示下列第二类曲面积分 ;
4. ,则 ;
5.写出 的特解形式 .
二、计算下列各题(共10分,每题5分)
1.计算曲面积分 ,其中 为平面 在第一卦限内的部分.
2. ,其中 为 的外侧.
三、判断下列级数的敛散性(共15分,每题5分 )
1. ; 2. ; 3. .
四、计算下列各题(共15分)
1.求幂级数 的收敛区域及和函数(收敛域5分,和函数5分)
2.将 展开成(x+4)的幂级数(5分).
五、(10分)以 为周期的函数 的傅氏级数
1.求系数a0,并证明 ;(5分)
2.求傅里叶级数的和函数S(x)在 上的表达式及 的值.(5分)
六、解下列各题(10分,每题5分)
1.求方程 的通解.
2.求方程 ,满足初始条件 的解.
七、(10分)设 具有二阶连续导数, ,且

为一个全微分方程,求 及此全微分方程的通解.
八、解下列各题(共10分,每题5分)
1.设二阶非齐次线性方程 的三个特解为: ,求此方程满足初始条件 的特解.
2.求方程 通解。
九、(10分)设空间有界闭区域 是由光滑闭曲面 围成,用平行 轴的直线穿过 内部时与其边界最多交于两点。 在闭区域 上具有一阶连续偏导数,证明

高等数学下册试卷B卷
一 求偏导数(24分)
1. 设 ,求dz.
2. 设 及 由方程组 确定,求 .
3. 设 具有二阶连续偏导数且满足 ,求 .
4. 设 ,求 .
二 求积分(24分)
1. 计算 ,其中D是以(0,0)、(1,1)、(0,1)为顶点的三角形区域.
2. 设L为y=x2上从(0,0)到(1,1)的一段,求 .
3. 设L为 上从 到 的一段弧,求 .

三 判别敛散性(10分)
1.
2.
四 (10分)
将 展成x的幂级数
五 求方程的解(10分)
1. 求方程 的通解.
2. 求 的通解

六 (10分)
求函数 在区域 上的最大和最小值.
七 (12分)
设 具有一阶连续偏导数,满足 ,求 所满足的一阶微分方程并求解.
高等数学下册试卷C卷
一、填空(每小题3分,共15分)
1.设 ,则
2. 。
3.设 是以 为周期的周期函数,在一个周期上的表达式为 ,则 的傅立叶系数 = 。
4.已知二阶常系数线性齐次微分方程的通解为 ,则该微分方程的最简形式为 。
5.已知 为圆周 ,则 = .
二、计算下列各题(共16分)
1. 2.
3. 4
三、计算下列各题(每小题5分,共20分)
1.计算 其中 。
2.曲面 是锥面 介于 之间的部分,其面密度为 ,计算曲面的质量
3.计算 ,其中 为从点 沿 的上半圆到点 的曲线弧。
4.计算积分 ,其中 为曲面 被平面 截下的有限部分的下侧。
四、解下列各题(共19分)
1.判断下列级数的敛散性(9分)
; ;
2.解下列各题(10分)
(1)求幂级数 的收敛半径。
(2)将函数 展开成 的幂级数。
五、解下列微分方程(每小题5分,共15分)
1.求 的通解。
2.求 的通解
3.已知: ,试确定函数 ,使曲线积分 与路径无关。
六、(7分)
在阿拉斯加海湾附近生活着一种大马哈鱼,其净增长率为0.003 。从某时刻(t=0)开始,有一群鲨鱼来到这些海域栖身并开始捕捉这里的大马哈鱼。鲨鱼吞食大马哈鱼的速度与当时大马哈鱼总数的平方成正比,比例系数为0.001。而且,由于一个不受欢迎的成员进入到它们的领域,每分钟有0.002条大马哈鱼离开阿拉斯加海域。
(1)建立数学模型以分析该海域大马哈鱼总数随时间的变化。
(2)设t=0时有一百万条大马哈鱼。观察群体总数在 时会发生什么情况。

七、(8分)如果某地区AIDS病人数的净增长率为r,已知该地区在1988年有这种病人161个。①问:到2000年该地区这种病人的总数有多少?②若该地区每年为每个AIDS病人所提供的费用是m元。问:从1988~2000这12年间,该地区为这种病人所提供的总费用有多少?。

⑵ 高等数学!求答案

《 高等数学(一) 》复习资料
一、选择题
1. 若,则( )
A. B. C. D.
2. 若,则( )
A. B. C. D.
3. 曲线在点(0,2)处的切线方程为( )
A. B. C. D.
4. 曲线在点(0,2)处的法线方程为( )
A. B. C. D.
5. ( )
A. B. C. D.
6.设函数,则=( )
A 1 B C D
7. 求函数的拐点有( )个。
A 1 B 2 C 4 D 0
8. 当时,下列函数中有极限的是( )。
A. B. C. D.
9.已知, ( ) 。
A. B. C. 1 D. -1
10. 设,则为在区间上的( )。
A. 极小值 B. 极大值 C. 最小值 D. 最大值
11. 设函数在上可导,且则在内( )
A.至少有两个零点 B. 有且只有一个零点
C. 没有零点 D. 零点个数不能确定
12. ( ).
A. B. C. D.
13. 已知,则( C )
A. B. C. D.
14. =( B)
A. B. C. D.
15. ( D )
A. B. C. D.
16. ( )
A. B. C. D.
17. 设函数,则=( )
A 1 B C D
18. 曲线的拐点坐标是( )
A.(0,0) B.( 1,1) C.(2,2) D.(3,3)
19. 已知,则( A )
A. B. C. D.
20. ( A)
A. B. C. D.
21. ( A )
A. B. C. D.
二、求积分(每题8分,共80分)
1.求.
2. 求.
3. 求.
4. 求
5. 求.
6. 求定积分.
7. 计算.
8. 求.
9. 求.
11. 求
12. 求
13. 求
14.求
三、解答题
1. 若,求
2.讨论函数的单调性并求其单调区间
3. 求函数的间断点并确定其类型
4. 设
5. 求的导数.
6. 求由方程 确定的导数.
7. 函数在处是否连续?
8. 函数在处是否可导?
9. 求抛物线与直线所围成图形的面积.
10. 计算由抛物线与直线围成的图形的面积.
11. 设是由方程确定的函数,求
12.求证:
13. 设是由方程确定的函数,求
14. 讨论函数的单调性并求其单调区间
15.求证:
16. 求函数的间断点并确定其类型
五、解方程
1. 求方程的通解.
2.求方程的通解.
3. 求方程的一个特解.
4. 求方程的通解.
高数一复习资料参考答案
一、选择题
1-5: DABAA
6-10:DBCDD
11-15: BCCBD
16-21:ABAAAA
二、求积分
1.求.
解:

2. 求.
解:

3. 求.
解:设,,即,则


4. 求
解:


5. 求.
解:由上述可知,所以


6. 求定积分.
解:令,即,则,且当时,;当时,,于是

7. 计算.
解:令,,则,,于是


再用分部积分公式,得


8. 求.
解:


9. 求.
解:令,则,,从而有

11. 求
解:
12. 求
解:
13. 求
解:
14.求
解:

三、解答题
1. 若,求
解:因为,所以
否则极限不存在。
2.讨论函数的单调性并求其单调区间
解:
由得
所以在区间上单调增,在区间上单调减,在区间上单调增。
3. 求函数的间断点并确定其类型
解:函数无定义的点为,是唯一的间断点。
因知是可去间断点。
4. 设
解:,


5. 求的导数.
解:对原式两边取对数得:

于是

6. 求由方程 确定的导数.
解:

⑶ 求解大学高等数学题

1.
收敛。
1到n的平方和是1/6*(n+1)*(2n+1),用整个数列的后一项比上前一项,得到
1/3,因为绝对值小于1,所以收敛

2.
#偏导符号
#e/#x=(#e/#u)*(#u/#x)+(#e/#v)*(#v/#x)
#e/#y=(#e/#u)*(#u/#y)+(#e/#v)*(#v/#y)

#e/#u=2u
#e/#v=2v

#u/#x=1
#u/#y=1

#v/#x=1
#v/#y=-1
代入得到:
#e/#x=2u+2v=4x
#e/#y=2u-2v=4y

3.
将原积分的d(面积)化为dxdy
由所围图形知道积分y从1/x到x,x从1(xy=1与y=x的交点的横坐标)到2。
所以先积分y,后积分x。得到答案:9/4

4.
把y=x代入原积分式消去y(消去y也可以)得到:
2(x^2)dx+(x^2)dx,且积分区间是x从0到3
答案是27

5.x3+y3+z3+xyz-6=0 在
设方程左边为F(x,y,z),即F(x,y,z)=x^2+y^2+z^2+xyz-6
F分别对x,y,z求偏导得到:F'(x)=yz,F'(y)=xz,F'(z)=xy
点(1,2,-1)处
法向量n={F'(x)=(y=2)(z=-1),F'(y)=(x=1)(z=-1),F'(z)=(x=1)(y=2)}
即n={-2,-1,2}
所以所求切平面方程为-2(x-1)-1(y-2)+2(z+1)=0,即-2x-y+2z+6=0

6.
两方程联立知道,立体在xoy面的投影区域为:x^2+y^2<=2
所以所求V=对xoy上面积分,积分函数是[(4-x^2-y^2)-(x^2+y^2)],积分之后即可得到结果
最后答案是:4*派

7.
因为P在xoy平面上,所以P(x,y,0).到三点的距离的平方是:
(x^2+y^2)+[(x-1)^2+y^2]+[x^2+(y-1)^2]
设其为f(x,y),
所以f(x,y)=3(x^2)-2x+1+3(y^2)-2y+1=3(x^2+y^2)-2(x+y)+2
多元函数极值问题
令f对x的偏导数6x-2=0,令f对y的偏导数6y-2=0
得出驻点(1/3,1/3),此即为取最小值的地方
所以答案是P(1/3,1/3,0)

PS:我不知道怎么在这上面画图,以上都是我亲自做的,如果哪儿不懂或者答案有误可以再问,但我觉得差不多的。。。呵呵,我比较谦虚地。。。嘿嘿

热点内容
江苏师范大学特聘教授 发布:2025-09-10 23:46:31 浏览:704
吉林财经大学考研科目 发布:2025-09-10 23:45:39 浏览:398
清华大学新闻传播学院教授史 发布:2025-09-10 23:29:25 浏览:117
大学生短期计划 发布:2025-09-10 23:24:14 浏览:176
大学老师电话 发布:2025-09-10 23:20:19 浏览:318
特别火的一个大学老师 发布:2025-09-10 23:19:07 浏览:875
2015南方医科大学研究生导师 发布:2025-09-10 23:18:26 浏览:819
大学兼职教授讲课 发布:2025-09-10 23:17:15 浏览:681
大学生总结规划 发布:2025-09-10 23:13:37 浏览:533
清华大学王一方教授 发布:2025-09-10 23:12:18 浏览:172