当前位置:首页 » 招生排名 » 武汉理工大学线性代数网络作业答案

武汉理工大学线性代数网络作业答案

发布时间: 2023-09-08 00:26:19

❶ 求解 武汉理工大学 机械设计试题这份试卷 答案 分不多 全给了!

武汉理工大学机械设计基础2006年A卷
一.选择题(每题1分,共20分)(选择正确答案填入横线上)
1.曲柄摇杆机构若存在死点时,是______与______共线。
(A)曲柄 (B)连杆 (C)摇杆 (D)机架
2.直动平底从动件盘形凸轮机构(从动件导路与平底垂直),不计摩擦时,其压力角______。
(A)永远等于 (B)永远等于900 (C)随凸轮转角而变化
.......
武汉理工大学机械设计基础2008年1月A卷
一、正误判断题(正确者在题号前标√;错误者在题号前标×)(10分)
1. 三角形螺纹常用于联接。
2. 为了降低带的最大工作有效拉力,可以采取增大带速方法。
3. 工作条件与型号一定的V带,其弯曲应力随小带轮直径的增大而增大。

❷ 哪里能找到武汉理工大学考研专业课试题,免费的

《武汉理工大学—考研专业课资料》网络网盘免费资源下载

链接: https://pan..com/s/1uN_IBaf6uE3Br_ftnYFP0A

?pwd=qhh2 提取码: qhh2

武汉理工大学—考研专业课资料|武汉理工|武汉理工材料科学基础|武汉理工大学材料学院历年考研复试试题答案总结.pdf|武汉理工大学材料学院简介.pdf|武汉理工大学材料科学基础硕士研究生入学考试大纲2013.pdf|武汉理工大学材料科学基础.rar|武汉理工大学材料科学基础(1).rar|武汉理工大学《材料科学基础》内部复习题及答案.pdf|武汉理工大学《材料科学基础》课后习题答案.pdf|武汉理工大学《材料科学基础》考研内部辅导班重点笔记.pdf|武汉理工大学《材料科学基础》考研名词解释汇总.pdf|武汉理工大学《材料科学基础》考研核心题库及答案.doc|武汉理工大学《材料科学基础》考研高频习题及解析.pdf|武汉理工材料科学基础考研资料(02-13).rar

❸ 武汉理工大学材料与化工考研经验分享

个人情况

❹ 人大出版社会计学基础第五版答案

答案

❺ 求《工程力学》(武汉理工大学出版社) 李卓球 朱四荣主编的课后答案!

不知道是不是这个
《工程力学》
习题选解
力学教研室
编著
2006年11 月

1-1试画出以下各题中圆柱或圆盘的受力图。与其它物体接触处的摩擦力均略去。

解:

1-2 试画出以下各题中AB杆的受力图。

解:

1-3 试画出以下各题中AB梁的受力图。

解:

1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD;(b) 半拱AB部分;(c) 踏板AB;(d) 杠杆AB;(e) 方板ABCD;(f) 节点B。

解:

1-5 试画出以下各题中指定物体的受力图。
(a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。

解:(a)

(b)

(c)

(d)

(e)

2-2 杆AC、BC在C处铰接,另一端均与墙面铰接,如图所示,F1和F2作用在销钉C上,F1=445 N,F2=535 N,不计杆重,试求两杆所受的力。

解:(1) 取节点C为研究对象,画受力图,注意AC、BC都为二力杆,

(2) 列平衡方程:

AC与BC两杆均受拉。
2-3 水平力F作用在刚架的B点,如图所示。如不计刚架重量,试求支座A和D 处的约束力。

解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:

(2) 由力三角形得

2-4 在简支梁AB的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。若梁的自重不计,试求两支座的约束力。

解:(1) 研究AB,受力分析并画受力图:

(2) 画封闭的力三角形:

相似关系:

几何尺寸:

求出约束反力:

2-6 如图所示结构由两弯杆ABC和DE构成。构件重量不计,图中的长度单位为cm。已知F=200 N,试求支座A和E的约束力。

解:(1) 取DE为研究对象,DE为二力杆;FD = FE

(2) 取ABC为研究对象,受力分析并画受力图;画封闭的力三角形:

2-7 在四连杆机构ABCD的铰链B和C上分别作用有力F1和F2,机构在图示位置平衡。试求平衡时力F1和F2的大小之间的关系。

解:(1)取铰链B为研究对象,AB、BC均为二力杆,画受力图和封闭力三角形;

(2) 取铰链C为研究对象,BC、CD均为二力杆,画受力图和封闭力三角形;

由前二式可得:

2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。试求在与OD平行的力F作用下,各杆所受的力。已知F=0.6 kN。

解:(1) 取整体为研究对象,受力分析,AB、AB、AD均为二力杆,画受力图,得到一个空间汇交力系;
(2) 列平衡方程:

解得:

AB、AC杆受拉,AD杆受压。

3-1 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。求在图a,b,c三种情况下,支座A和B的约束力

解:(a) 受力分析,画受力图;A、B处的约束力组成一个力偶;

列平衡方程:

(b) 受力分析,画受力图;A、B处的约束力组成一个力偶;

列平衡方程:

(c) 受力分析,画受力图;A、B处的约束力组成一个力偶;

列平衡方程:

3-2 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求A和C点处的约束力。

解:(1) 取BC为研究对象,受力分析,BC为二力杆,画受力图;

(2) 取AB为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;

3-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M1=500 Nm,M2 =125 Nm。求两螺栓处的铅垂约束力。图中长度单位为cm。

解:(1) 取整体为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;
(2) 列平衡方程:

3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB所受的力。各杆重量不计。

解:(1) 研究BC杆,受力分析,画受力图:

列平衡方程:

(2) 研究AB(二力杆),受力如图:

可知:

(3) 研究OA杆,受力分析,画受力图:

列平衡方程:

3-7 O1和O 2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。如两半径为r=20 cm, F1 =3 N, F2 =5 N,AB=80 cm,不计构件自重,试计算轴承A和B的约束力。

解:(1) 取整体为研究对象,受力分析,A、B处x方向和y方向的约束力分别组成力偶,画受力图。
(2) 列平衡方程:

AB的约束力:

3-8 在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸如图。求支座A的约束力。

解:(1) 取BC为研究对象,受力分析,画受力图;

(2) 取DAC为研究对象,受力分析,画受力图;

画封闭的力三角形;

解得

4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kNm,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。

解:
(b):(1) 整体受力分析,画出受力图(平面任意力系);

(2) 选坐标系Axy,列出平衡方程;

约束力的方向如图所示。
(c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系);

(2) 选坐标系Axy,列出平衡方程;

约束力的方向如图所示。
(e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系);

(2) 选坐标系Axy,列出平衡方程;

约束力的方向如图所示。
4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成角,求固定端的约束力。

解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系);

(2) 选坐标系Bxy,列出平衡方程;

约束力的方向如图所示。
4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒?

解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系);

(2) 选F点为矩心,列出平衡方程;

(3) 不翻倒的条件;

4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。

解:(1):研究整体,受力分析,画出受力图(平面平行力系);

(2) 选坐标系Bxy,列出平衡方程;

(3) 研究AB,受力分析,画出受力图(平面任意力系);

(4) 选A点为矩心,列出平衡方程;

4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少?

解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系);

(2) 选x轴为投影轴,列出平衡方程;

(3) 研究杠杆AB,受力分析,画出受力图(平面任意力系);

(4) 选C点为矩心,列出平衡方程;

4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kNm,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。

解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系);

(2) 选坐标系Cxy,列出平衡方程;

(3) 研究ABC杆,受力分析,画出受力图(平面平行力系);

(4) 选坐标系Bxy,列出平衡方程;

约束力的方向如图所示。
4-17 刚架ABC和刚架CD通过铰链C连接,并与地面通过铰链A、B、D连接,如题4-17图所示,载荷如图,试求刚架的支座约束力(尺寸单位为m,力的单位为 kN,载荷集度单位为 kN/m)。

解:
(a):(1) 研究CD杆,它是二力杆,又根据D点的约束性质,可知:FC=FD=0;
(2) 研究整体,受力分析,画出受力图(平面任意力系);

(3) 选坐标系Axy,列出平衡方程;

约束力的方向如图所示。
(b):(1) 研究CD杆,受力分析,画出受力图(平面任意力系);

(2) 选C点为矩心,列出平衡方程;

(3) 研究整体,受力分析,画出受力图(平面任意力系);

(4) 选坐标系Bxy,列出平衡方程;

约束力的方向如图所示。
4-18 由杆AB、BC和CE组成的支架和滑轮E支持着物体。物体重12 kN。D处亦为铰链连接,尺寸如题4-18图所示。试求固定铰链支座A和滚动铰链支座B的约束力以及杆BC所受的力。

解:(1) 研究整体,受力分析,画出受力图(平面任意力系);

(2) 选坐标系Axy,列出平衡方程;

(3) 研究CE杆(带滑轮),受力分析,画出受力图(平面任意力系);

(4) 选D点为矩心,列出平衡方程;

约束力的方向如图所示。
4-19 起重构架如题4-19图所示,尺寸单位为mm。滑轮直径d=200 mm,钢丝绳的倾斜部分平行于杆BE。吊起的载荷W=10 kN,其它重量不计,求固定铰链支座A、B的约束力。

解:(1) 研究整体,受力分析,画出受力图(平面任意力系);

(2) 选坐标系Bxy,列出平衡方程;

(3) 研究ACD杆,受力分析,画出受力图(平面任意力系);

(4) 选D点为矩心,列出平衡方程;

(5) 将FAy代入到前面的平衡方程;

约束力的方向如图所示。
4-20 AB、AC、DE三杆连接如题4-20图所示。DE杆上有一插销F套在AC杆的导槽内。求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。设AD=DB,DF=FE,BC=DE,所有杆重均不计。

解:(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向;
(2) 研究DFE杆,受力分析,画出受力图(平面任意力系);

(3) 分别选F点和B点为矩心,列出平衡方程;

(4) 研究ADB杆,受力分析,画出受力图(平面任意力系);

(5) 选坐标系Axy,列出平衡方程;

约束力的方向如图所示。

5-4 一重量W=1000 N的匀质薄板用止推轴承A、径向轴承B和绳索CE支持在水平面上,可以绕水平轴AB转动,今在板上作用一力偶,其力偶矩为M,并设薄板平衡。已知a=3 m,b=4 m,h=5 m,M=2000 Nm,试求绳子的拉力和轴承A、B约束力。

解:(1) 研究匀质薄板,受力分析,画出受力图(空间任意力系);

(2) 选坐标系Axyz,列出平衡方程;

约束力的方向如图所示。
5-5 作用于半径为120 mm的齿轮上的啮合力F推动皮带绕水平轴AB作匀速转动。已知皮带紧边拉力为200 N,松边拉力为100 N,尺寸如题5-5图所示。试求力F的大小以及轴承A、B的约束力。(尺寸单位mm)。

解: (1) 研究整体,受力分析,画出受力图(空间任意力系);

(2) 选坐标系Axyz,列出平衡方程;

约束力的方向如图所示。
5-6 某传动轴以A、B两轴承支承,圆柱直齿轮的节圆直径d=17.3 cm,压力角=20o。在法兰盘上作用一力偶矩M=1030 Nm的力偶,如轮轴自重和摩擦不计,求传动轴匀速转动时的啮合力F及A、B轴承的约束力(图中尺寸单位为cm)。

解: (1) 研究整体,受力分析,画出受力图(空间任意力系);

(2) 选坐标系Axyz,列出平衡方程;

约束力的方向如图所示。

6-9 已知物体重W=100 N,斜面倾角为30o(题6-9图a,tan30o=0.577),物块与斜面间摩擦因数为fs=0.38,f’s=0.37,求物块与斜面间的摩擦力?并问物体在斜面上是静止、下滑还是上滑?如果使物块沿斜面向上运动,求施加于物块并与斜面平行的力F至少应为多大?

解:(1) 确定摩擦角,并和主动力合力作用线与接触面法向夹角相比较;

(2) 判断物体的状态,求摩擦力:物体下滑,物体与斜面的动滑动摩擦力为

(3) 物体有向上滑动趋势,且静滑动摩擦力达到最大时,全约束力与接触面法向夹角等于摩擦角;

(4) 画封闭的力三角形,求力F;

6-10 重500 N的物体A置于重400 N的物体B上,B又置于水平面C上如题图所示。已知fAB=0.3,fBC=0.2,今在A上作用一与水平面成30o的力F。问当F力逐渐加大时,是A先动呢?还是A、B一起滑动?如果B物体重为200 N,情况又如何?

解:(1) 确定A、B和B、C间的摩擦角:

(2) 当A、B间的静滑动摩擦力达到最大时,画物体A的受力图和封闭力三角形;

(3) 当B、C间的静滑动摩擦力达到最大时,画物体A与B的受力图和封闭力三角形;

(4) 比较F1和F2;

物体A先滑动;
(4) 如果WB=200 N,则WA+B=700 N,再求F2;

物体A和B一起滑动;
6-11 均质梯长为l,重为P,B端靠在光滑铅直墙上,如图所示,已知梯与地面的静摩擦因数fsA,求平衡时=?

解:(1) 研究AB杆,当A点静滑动摩擦力达到最大时,画受力图(A点约束力用全约束力表示);
由三力平衡汇交定理可知,P、FB、FR三力汇交在D点;
(2) 找出min和 f的几何关系;

(3) 得出角的范围;

6-13 如图所示,欲转动一置于V槽型中的棒料,需作用一力偶,力偶矩M=1500 Ncm,已知棒料重G=400 N,直径D=25 cm。试求棒料与V型槽之间的摩擦因数fs。

解:(1) 研究棒料,当静滑动摩擦力达到最大时,画受力图(用全约束力表示);

(2) 画封闭的力三角形,求全约束力;

(3) 取O为矩心,列平衡方程;

(4) 求摩擦因数;

6-15 砖夹的宽度为25 cm,曲杆AGB与GCED在G点铰接。砖的重量为W,提砖的合力F作用在砖对称中心线上,尺寸如图所示。如砖夹与砖之间的摩擦因数fs=0.5,试问b应为多大才能把砖夹起(b是G点到砖块上所受正压力作用线的垂直距离)。

解:(1) 砖夹与砖之间的摩擦角:

(2) 由整体受力分析得:F=W
(2) 研究砖,受力分析,画受力图;

(3) 列y方向投影的平衡方程;

(4) 研究AGB杆,受力分析,画受力图;

(5) 取G为矩心,列平衡方程;

6-18 试求图示两平面图形形心C的位置。图中尺寸单位为mm。

解:(a) (1) 将T形分成上、下二个矩形S1、S2,形心为C1、C2;

(2) 在图示坐标系中,y轴是图形对称轴,则有:xC=0
(3) 二个矩形的面积和形心;

(4) T形的形心;

(b) (1) 将L形分成左、右二个矩形S1、S2,形心为C1、C2;

(3) 二个矩形的面积和形心;

(4) L形的形心;

6-19试求图示平面图形形心位置。尺寸单位为mm。

解:(a) (1) 将图形看成大圆S1减去小圆S2,形心为C1和C2;

(2) 在图示坐标系中,x轴是图形对称轴,则有:yC=0
(3) 二个图形的面积和形心;

(4) 图形的形心;

(b) (1) 将图形看成大矩形S1减去小矩形S2,形心为C1和C2;

(2) 在图示坐标系中,y轴是图形对称轴,则有:xC=0
(3) 二个图形的面积和形心;

(4) 图形的形心;

8-1 试求图示各杆的轴力,并指出轴力的最大值。

解:(a)
(1) 用截面法求内力,取1-1、2-2截面;

(2) 取1-1截面的左段;

(3) 取2-2截面的右段;

(4) 轴力最大值:

(b)
(1) 求固定端的约束反力;

(2) 取1-1截面的左段;

(3) 取2-2截面的右段;

(4) 轴力最大值:

(c)
(1) 用截面法求内力,取1-1、2-2、3-3截面;

(2) 取1-1截面的左段;

(3) 取2-2截面的左段;

(4) 取3-3截面的右段;

(5) 轴力最大值:

(d)
(1) 用截面法求内力,取1-1、2-2截面;

(2) 取1-1截面的右段;

(2) 取2-2截面的右段;

(5) 轴力最大值:

8-2 试画出8-1所示各杆的轴力图。
解:(a)

(b)

(c)

(d)

8-5 图示阶梯形圆截面杆,承受轴向载荷F1=50 kN与F2作用,AB与BC段的直径分别为d1=20 mm和d2=30 mm ,如欲使AB与BC段横截面上的正应力相同,试求载荷F2之值。

解:(1) 用截面法求出1-1、2-2截面的轴力;

(2) 求1-1、2-2截面的正应力,利用正应力相同;

8-6 题8-5图所示圆截面杆,已知载荷F1=200 kN,F2=100 kN,AB段的直径d1=40 mm,如欲使AB与BC段横截面上的正应力相同,试求BC段的直径。
解:(1) 用截面法求出1-1、2-2截面的轴力;

(2) 求1-1、2-2截面的正应力,利用正应力相同;

8-7 图示木杆,承受轴向载荷F=10 kN作用,杆的横截面面积A=1000 mm2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。

解:(1) 斜截面的应力:

(2) 画出斜截面上的应力

8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30 mm与d2=20 mm,两杆材料相同,许用应力[σ]=160 MPa。该桁架在节点A处承受铅直方向的载荷F=80 kN作用,试校核桁架的强度。

解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;

AB和BC皆为细长压杆,则有:

(3) 两杆同时达到临界压力值, F为最大值;

由铰B的平衡得:

15-9 图示矩形截面压杆,有三种支持方式。杆长l=300 mm,截面宽度b=20 mm,高度h=12 mm,弹性模量E=70 GPa,λp=50,λ0=30,中柔度杆的临界应力公式为
σcr=382 MPa – (2.18 MPa)λ
试计算它们的临界载荷,并进行比较。

解:(a)
(1) 比较压杆弯曲平面的柔度:

长度系数: μ=
(2) 压杆是大柔度杆,用欧拉公式计算临界力;b)
(1) 长度系数和失稳平面的柔度:
(2) 压杆仍是大柔度杆,用欧拉公式计算临界力;
(c)
(1) 长度系数和失稳平面的柔度:
(2) 压杆是中柔度杆,选用经验公式计算临界
三种情况的临界压力的大小排序:
15-10 图示压杆,截面有四种形式。但其面积均为A=3.2×10 mm2, 试计算它们的临界载荷,并进行比较。材料的力学性质见上题。
解:(a)
(1) 比较压杆弯曲平面的柔度:
矩形截面的高与宽
长度系数:μ=0.5
(2) 压杆是大柔度杆,用欧拉公式计算临界力:
(b)
(1) 计算压杆的柔度:
正方形的边长:
长度系数:μ=0.5
(2) 压杆是大柔度杆,用欧拉公式计算临界力:
(c)
(1) 计算压杆的柔度:
圆截面的直径:
长度系数:μ=0.5
(2) 压杆是大柔度杆,用欧拉公式计算临界力:
(d)
(1)计算压杆的柔度:
空心圆截面的内径和外径:
长度系数:μ=0.5
(2) 压杆是大柔度杆,用欧拉公式计算临界力;
四种情况的临界压力的大小排序:
15-12 图示压杆,横截面为bh的矩形, 试从稳定性方面考虑,确定h/b的最佳值。当压杆在x–z平面内失稳时,可取μy=0.7。
解:(1) 在x–z平面内弯曲时的柔度;

(2) 在x–y平面内弯曲时的柔度;

(3) 考虑两个平面内弯曲的等稳定性;

❻ 武汉理工大学材料科学与工程考研经验分享

本人考研成绩:

热点内容
2016湖南本科生规培报名时间 发布:2025-09-06 09:33:48 浏览:752
苏州大学朱教授 发布:2025-09-06 09:01:41 浏览:986
李慧武汉大学化学与分子博士 发布:2025-09-06 09:00:53 浏览:310
合肥工业大学考研租房 发布:2025-09-06 09:00:26 浏览:986
山西太原师范大学武老师 发布:2025-09-06 08:55:12 浏览:45
上海中医药大学博士补助 发布:2025-09-06 08:20:50 浏览:855
美国大学篮球比赛视频 发布:2025-09-06 08:13:28 浏览:900
大学生怎么办暂住证 发布:2025-09-06 07:59:17 浏览:434
2013年全国大学生英语竞赛 发布:2025-09-06 07:38:36 浏览:135
北京理工大学教授排名 发布:2025-09-06 07:21:48 浏览:201