大学数学什么专科要学
A. 大学本科数学专业的,都要学哪些科目
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者版是老三门,将权来如果考研时要用到的。
近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。
另外其他的一些常见的分支包括复变函数、常微分、运筹、最优化,数学模型。
B. 大学数学学什么(非数学专业)
普通工科都有:高数即高等数学(分上、下。更高级点的就是数学分析了,比高数难一点),概率,复变函数。其中概率、复变不同专业分不同要求。根据专业不同也可能会加入更系统更小的专业划分,如:数据统计,模型建立等。你提及到的9点里面,很多都是在高数里有对应知识点的。下面分别作答下:
1:立体几何在大学数学高数中是没有专门的几何的,不过会涉及到很多空间曲线,其中就包括立体几何的图形,那个时候重点就是微积分,包括对点、线、面、体的积分。
2:平面几何就跟我1中说到的一样了,都是微积分中应用到的图形,并不像初中高中那样纯粹地看一个图形。比如初中高中就用一些公式定理证明解答之类的。大学就是要把很多问题细节化。上面提及的高数的立体几何就是三重积分,而面就是双重积分。
3:概率与统计是有的,有的专业也是可以不学。概率的知识很多跟高中学的是一样的,不过它里面的定理比高中的多很多,更划分了很多,如果是考试的话会比高数容易很多,很多人数学怕的就是高数,高数在大学中计入的学分很重。
4:向量是有的,也是包含在高数里面的,而且跟向量关联的还有梯度等知识。很多专业知识也会涉及到这些。所以高数是学习很多专业知识的基础。
5:三角函数也是有的,三角函数在高数的微积分有,在专业知识也有用到,在复变函数也会有。
6:数列也有,在高数、概率中都有。
7:圆锥曲线也有,高数的微积分中用的不少,难点的微积分都是三重或多重积分
8:排列组合也有,高数,概率,复变都涉及。
9:大致模块我在开头已经说了,高数是重点,然后是概率和复变,根据专业不同还有更多细节的,具体学校和专业具体看的。
要了解更多高数等知识还可以去很多论坛和网站了解。
希望我的回答对你有帮助。
C. 大学数学专业都有哪些课程要详细
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计。这三者是老三门,将来如果考研时要用到的。近代数学的新三门是拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。另外其他的一些常见的包括数学分析、微分几何、高等几何、常微分方程、偏微分方程、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。
拓展资料:
1. 数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
2. 数学专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具有现代教育观念,适应教育改革需要,以及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。
3. 计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。
