傅里叶幅值谱本科毕业论文
㈠ 离散信号的快速傅里叶分析中幅值和相位图怎么分析
图像的傅立叶变换可参考fft2,abs计算幅度谱,angle计算相位。
幅度谱一般代表图像的亮度信息,相位谱代表图像的构造纹理信息,你可有试验使用相位谱和单位幅度谱重构图像。
㈡ 对速度信号进行傅里叶谱分析之后,其纵坐标对应的幅值的物理意义是什么是速度,还是振幅
横坐标是频率,纵坐标是对应频率成分的幅度。对速度信号进行傅里叶谱分析之后,纵坐标表示的是不同加速度的幅度。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。
肯定没有物理意义的,物理定义上没有负频率的说法。但是有数学含义,双边谱的数学对称性好,便于分析。——也就是说,便于从频域作数学计算。(一般都是计算机的高速处理)
(2)傅里叶幅值谱本科毕业论文扩展阅读:
频谱分析是一种将复噪声号分解为较简单信号的技术。许多物理信号均可以表示为许多不同频率简单信号的和。找出一个信号在不同频率下的信息(可能是幅度、功率、强度或相位等)的作法就是频谱分析。
频谱分析可以对整个信号进行。不过有时也会将信号分割成几段,再针对各段的信号进行频谱分析。周期函数最适合只考虑一个周期的信号来进行频谱分析。傅里叶分析中有许多分析非周期函数时需要的数学工具。
一个函数的傅里叶变换包括了原始信号中的所有信息,只是表示的型式不同。因此可以用反傅里叶变换重组原始的信号。若要完整的重组原始信号,需要有每个频率下的幅度及其相位,这些信息可以用二维向量、复数、或是极座标下的大小及角度来表示。在信号处理中常常考虑幅度的平方,也就是功率,所得的就是功率谱密度。
㈢ 毕业论文,关于傅立叶(fourier)变换。求达人。
傅立叶(Fourier, Jean Baptiste Joseph, 1768-1830)
法国数学家及物理学家。
最早使用定积分符号,改进符号法则及根数判别方法。
傅立叶级数(三角级数)创始人。
法国数学家、物理学家。1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎。9岁父母双亡, 被当地教堂收养 。12岁由一主教送入地方军事学校读书。17岁(1785)回乡教数学,1794到巴 黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教。1798年随拿破仑远征埃及 时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官。1817年当选为科学院院 士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委 员会主席。
主要 贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文, 推导 出着名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示 ,从而提出任一函数都可以展成三角函数的无穷级数。
1822 年在代表作《热的分析理论》中解 决了热在非均匀加热的 固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19 世纪数学和理论物理学的发展产生深远影响 。傅立叶级数(即三角级数)、傅立叶分析等理论 均由此创始。其他贡献有:最早使用定积分符号,改进了代数方 程符号法则的证法和实根个数 的判别法等。
还有一个网址是http://ke..com/view/482242.htm
傅立叶是一个法国数学家,他的论文“传热理论的分析与研究”对数学物理学产生的了很大影响。依据他的研究,固体中的导热现象能通过无穷数学级数来表示,即以他的名字命名的傅立叶级数。他通过对典型导热现象的分析研究,打打促进了数学物理学的发展。这些研究也就是围绕许多自然现象,比如太阳黑子、潮汐、大气气候等,一直以来我们说的边界问题的求解。他的研究对这个理论的实际应用产生很大的影响,其中,现代数学就是其中的一个分支。
傅立叶是一个裁缝的儿子,早在他小学时就对数学产生浓厚的兴趣。后来他也曾在他的母校担任数学教师。法国革命的浪潮中,他投身于政治,从此以后,它的生活一直充满了冒险。1794年,法国école Normale 学校建立,他成为该学校第一批学生之一。次年,他在该学校任教,同年加入学校教授会,并成为数学家协会的一成员。
1798年,傅立叶和其他队员一起,陪同拿破仑远征埃及。1801年,他开始着手大范围研究埃及古迹,并在1798年拿破仑建立于Cairo研究所担任三年秘书,他在工程技术以及外交任务方面都提出许多意见。回国后,他被任命出版了大量的有关埃及的刊物。1809年拿破仑封他为男爵。1815年,拿破仑垮台,此后傅立叶在巴黎过了一段平静的学术研究生活。1817年,他被选为科学院院士,1822年,担任科学院常任秘书。
傅立叶于1807年开始他的学术论文写作,并提出求解偏微分方程的分离变量法和可以将解表示成一系列任意函数的概念。于1822年完成论文,发表了著名论著“热的解析理论”,这一著作奠定了导热的理论基础,描述导热的定律就是以他的名字命名的。他论文的研究结果标明:可以用一个偏微分方程来表示固体中的二维导热现象现在地问题是要找出一个特定的温度,比如,对于一个无限大的导热平板,如果在t=0时刻给定了平板边界处的温度。这个问题可视为一个一维导热问题
傅立叶毕生都致力于导热现象的数学表示研究以及确定这些代数方程根的研究。傅立叶被公认为导热理论的奠基人。
㈣ 用matlab进行傅里叶变换。傅里叶变换得到的相位谱、幅值谱有什么用怎么分析
对速度信号进行傅里叶谱分析之后,其纵坐标对应的幅值的物理意义是频率。
傅里叶变换广泛应用于物理、电子、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域。
例如在信号处理中,傅里叶变换的典型用法是将信号分解成频谱——显示与频率对应的振幅的大小。
(4)傅里叶幅值谱本科毕业论文扩展阅读:
信号处理的基本内容包括变换、滤波、调制、解调、检测、频谱分析和估计。例如类型的傅里叶变换、正弦变换、余弦变换、沃尔什变换等。滤波包括高通滤波、低通滤波、带通滤波、维纳滤波、卡尔曼滤波、线性滤波、非线性滤波和自适应滤波。
频谱分析包括确定信号分析和随机信号分析。通常最常见的研究是随机信号分析,也称为统计信号分析或估计,通常分为线性谱估计和非线性谱估计。
谱估计包括周期图估计、最大熵谱估计等。由于信号类型的复杂性,当被分析信号不能满足高斯分布和非最小相位条件时,就有了一种高阶谱分析方法。
高阶谱分析可以提供信号的相位信息、非高斯信息和非线性信息。自适应滤波和均衡也是应用研究的重要领域。自适应滤波包括水平LMS自适应滤波、格点自适应滤波、自适应抵消滤波和自适应均衡滤波。另外,还有阵列信号处理等。
㈤ ‘傅里叶级数的收敛及判断’论文的开题报告如何写
根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 http://www.lw54.com ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找:
毕业论文网: http://www.wsdxs.cn 分类很细 栏目很多
毕业论文: http://www.dxsip.com
毕业设计: http://www.lw54.com/html/sf/lw/2009/0928/146347.html
开题报告: http://www.wsdxs.cn/html/lunwen/kaitibaogao
实习论文: http://www.lw54.com/html/shixi
写作指导: http://www.wsdxs.cn/html/lunwen
㈥ 快速傅里叶转化(FFT)中幅值图的意义是什么
http://wenku..com/view/3b5fe264f5335a8102d22076.html 同在找这个问题的解释, 这个有点帮助