當前位置:首頁 » 專業名單 » 大學數學專業中的數學

大學數學專業中的數學

發布時間: 2021-03-05 02:06:43

A. 大學的數學專業都學什麼啊

主要學習如下課程:

數學分析、高等代數、高等數學、解析幾何內、容微分幾何、高等幾何、常微分方程、偏微分方程、概率論與數理統計、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。師范類還要學習數學教育學等。

數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。

(1)大學數學專業中的數學擴展閱讀

概率和統計:

作為數學的分支,概率學是研究隨機事件的一門科學技術,涉及工程、生物學、化學、遺傳學、博弈論、經濟學等多方面的應用,幾乎遍及所有的科學技術領域,可以說是各種預測的基石。

概率論與數理統計是本世紀迅速發展的學科,研究各種隨機現象的本質與內在規律性以及自然科學、社會科學等各個學科中各種類型數據的科學的綜合處理及統計推斷方法。

B. 大學數學專業類型的哪個數學專業好

原始

C. 大學專業里數學和應用數學有什麼區別

基本上差別不大
應用數學是個幌子
因為數學類專業不好招生
於是就有了應用數學這個新詞
吸引眼球
如果你真的想應用數學
就去選擇工科或者經濟類的專業

D. 大學數學系有哪些專業

包括:數學與應用數學、信息與計算科學、數理基礎科學3個專業。

拓展資料:

數學內與應用數學專業簡容介:

本專業主要培養掌握數學科學的基本理論與基本方法,需要學生具備基礎運用數學知識、使用計算機解決現實中實際問題的能力,受科學研究方向的具體初步訓練,可在科技、教育和經濟部門一般性從事研究、教學工作。或在生產經營,管理部門進行實際應用、開發研究和管理工作的高級專門人才。

信息與計算科學專業簡介:

本專業的課程體系和知識結構體現了在扎實的數學基礎之上,合理架構信息科學與計算機科學的專業基礎理論。通過資訊理論、科學計算、運籌學等方面的基礎知識教育和建立數學模型、數學實踐課、專業實習各環節的訓練,著重培養學生解決科學計算、軟體開發和設計、信息處理與編碼等實際問題的能力,培養能勝任信息處理、科學與工程計算部門工作的高級專門人才。

數理基礎科學專業簡介:

該專業主要培養能從事數學、物理等基礎科學教學和科研的有發展潛力的優秀人才,尤其是在數學、物理上具有創新的能力的人才,同時也為對數理基礎要求高的其它學科培養有良好的數理基礎的新型人才。

E. 大學數學專業學哪些內容

1.課程名稱:解析幾何 Analytic Geometry 總學時: 64 周學時: 4 學分: 3 開課學期:一 修讀對象:必修 預修課程:無 內容簡介: 《解析幾何》是學科基礎課程,是所有數學專業及應用數學專業的主要的基礎課。 它是用代數的方法來研究幾何圖形性質的一門學科。 《解析幾何》包括向量與坐標,軌跡與 方程,平面與空間直線,柱面、錐面、旋轉曲面與二次曲面,二次曲線的一般理論與二次曲 面的一般理論等。

2.課程名稱:數學分析Ⅰ-Ⅳ Mathematical AnalysisⅠ-Ⅳ 總學時: 334 周學時: 4,4,6,5 學分: 18 開課學期:一,二,三,四 修讀對象:必修 預修課程:無 內容簡介: 《數學分析》是學科基礎課程,是所有數學專業及應用數學專業的第一基礎課。 它提供了利用函數分析和解決實際問題的方法, 培養學生嚴謹的抽象思維能力, 為學習其他 學科奠定基礎。

3.課程名稱:高等代數Ⅰ-Ⅱ Advanced AlgebraⅠ-Ⅱ 總學時: 198 周學時: 6,5 學分: 11 開課學期:二,三 修讀對象:必修 預修課程:無 內容簡介: 《高等代數》是學科基礎課程,是所有數學專業及應用數學專業的主要的基礎課。

4.課程名稱:常微分方程 Ordinary Differential Equation 總學時: 72 周學時: 4 學分: 4 開課學期:五 修讀對象:必修 預修課程:數學分析 高等代數 內容簡介: 《常微分方程》作為一門專業基礎課,是數學理論特別是微積分學聯系實際的重要 渠道之一。

5.課程名稱:復變函數 Complex Analysis 總學時: 72 周學時: 4 學分: 4 開課學期:五 修讀對象:必修 預修課程:數學分析高等代數 內容簡介: 《復變函數》是專業基礎課,是函數論方面的基礎課程,它是數學分析的後繼課 程。 這門課程主要內容是復數與復變函數,解析函數,復變函數的積分,解析函數的冪級數表示 法,解析函數的洛朗展式志孤立奇點,留數理論及其應用,共形映射,解析延拓和調和函數。

6.課程名稱:概率論與數理統計 Probability and Mathematical Statistics 總學時: 90 周學時: 5 學分: 5 開課學期:五 修讀對象:必修 預修課程:數學分析高等代數 內容簡介: 《概率論與數理統計》是專業基礎課,本課程是唯一一門處理隨機現象的數學類 必修課程, 本課程研究隨機現象的統計規律性及統計推斷, 設置這一門課的目的在於使學生 初步掌握處理隨機現象的基本理論和方法, 並獲得解決和分析某些實際問題的能力。

7.課程名稱:初等數學研究 Elementary Mathematics Research 總學時: 72 周學時: 4 學分: 4 開課學期:六 修讀對象:必修 預修課程:數學分析高等代數 內容簡介: 《初等數學研究》是專業基礎課,初等數學研究主要包括初等代數和初等幾何兩 部分內容,它是一門古老而又充滿生命力的學科,是師范院校數學專業的必修課程。面向新 課程改革,本課程比較系統地闡述了初等數學的基礎理論,其中包括集合與邏輯、數與式的 理論、函數、方程與不等式的理論、公理化方法與圖形的演繹推理、幾何變換、幾何的向量 結構及坐標法、 排列組合與概率統計初步以及中學數學解題策略等內容。

8.課程名稱:近世代數 Modern Algebra 總學時: 72 周學時:4 學分: 4 開課學期:六 修讀對象:必修 預修課程:高等代數 內容簡介: 《近世代數》是專業基礎課,近世代數是近代數學的重要分支。近世代數比較全 面介紹了群、環、域的理論及一些具體的群、環和域。

9.課程名稱:實變函數與泛函分析 Real Analysis and Function Analysis 總學時: 72 周學時: 4 學分: 4 開課學期:六 修讀對象:必修 預修課程:高等代數 內容簡介: 《實變函數與泛函分析》是專業基礎課,是是數學各專業的一門重要分析基礎課, 它是學生進一步學習其它分析數學分支和科學研究必不可少的基礎知識, 通過實變函數部分 的學習, 應使學生較好的掌握測度與積分這個基本的數學工具, 特別是極限與積分順序的交 換。 並且在一定程度上掌握集的分析方法。 泛函分析是學習和研究近代數學的純粹數學與應 用數學,數理經濟數值計算及現代工程技術理論。

10.課程名稱:微分幾何 Differential Geometry 總學時: 54 周學時: 3 學分: 3 開課學期:五 修讀對象:選修 預修課程:數學分析 常微分方程 內容簡介: 《微分幾何》是素質拓展課程,是以數學分析為主要工具研究空間形式的一門學 科, 是幾何學的一個分支, 由於微分幾何這門學科在科學技術和其他自然科學的領域中日趨 廣泛的滲透和應用,它的生命力至今還很旺盛,從內容和方法上不斷有所更新。

11.課程名稱:拓撲學 Topology 總學時: 54 周學時:3 學分: 3 開課學期:六 修讀對象:選修 預修課程:數學分析 內容簡介:拓撲學是專業拓展課程,是基礎性的數學分支,它研究幾何圖形在連續變形(即 拓撲變換)下保持不變的性質,即拓撲性質。目前,拓撲學的概念、方法和理論已經廣泛地 滲透到現代數學以及鄰近學科的許多領域, 並且有了日益重要的應用。

12.課程名稱:數學物理方程 The Equation of Mathematics and Physics 總學時:36 周學時:2 學分: 2 開課學期:七 修讀對象:必修 預修課程:數學分析、高等代數、微分方程 內容簡介: 《數學物理方程》是專業拓展課程。它綜合運用前期數學知識解決有關的實際問 題,是聯系數學建模和方程問題求解的橋梁。主要內容有三類最重要的偏微分方程(Laplace 方程, 熱傳導方程, 波動方程)的數學模型和各種定解條件的提出; 求解偏微分方程的基本方 法:分離變數法、積分變換法(Fourier 變換和 Laplace 變換) 、行波法、基本解和 Green 函 數法和兩類最常用的特殊—柱函數 (Bessel 方程、 Bessel 函數性質及應用) 和球函數 (Legendre 方程和 Legendre 函數性質和應用) 。

13.課程名稱:數學建模 Mathematical Modeling 總學時:54(18+36) 周學時:1+2 學分: 3 開課學期:五 修讀對象:選修 預修課程:數學分析,高等代數,概率論與數理統計,計算方法 內容簡介: 《數學建模》是專業拓展課程。主要培養學生綜合運用數學知識解決實際問題的 能力與意識。主要內容有數學建模的一般方法(初等模型) ,微分方程與差分方程模型理論 與方法及應用(種群生態學模型、動態經濟學模型、動力系統穩定性問題) 、模式識別模型 方法、理論與應用(代數方法、概率統計方法、人工神經網路方法) ,綜合決策模型與應用 (層次分析法模型) 。

14.課程名稱:運籌學 Operational Research 總學時: 36 周學時: 2 學分: 2 開課學期:七 修讀對象:選修 預修課程:高等數學、線性代數 內容簡介: 《運籌學》是素質拓展課程,主要內容包括:運籌學簡史、線性規劃與目標規劃、 整數規劃、非線性規劃、動態規劃、圖論與網路分析、排論隊簡介、存貯論、對策論與決策 論簡介。

15.課程名稱:離散數學 Discrete Mathematics 總學時: 54 周學時: 3 學分: 3 開課學期:五 修讀對象:選修 預修課程:數學分析 高等代數 內容簡介: 《離散數學》是專業拓展課程,本課程的目的是介紹離散數學的基本概念和原理, 提高學生抽象思維和邏輯推理的能力。

16.課程名稱:計算方法 Computing Method 總學時:54 周學時:3 學分: 3 開課學期:六 修讀對象:必修 預修課程:數學分析、高等代數、微分方程 內容簡介: 《計算方法》又稱《數值分析》 ,是專業拓展課程,是研究各種數學問題求解的數 值計算方法。 學習此課的目的是設計演算法求出數學模型的近似解。

17.課程名稱:數學軟體與實驗 Mathematica and Mathematical Experiments 總學時:36(18+18) 周學時:1+1 學分: 3 開課學期:七 修讀對象:選修 預修課程:數學分析,高等代數,微分方程,計算方法 內容簡介: 《數學軟體與實驗》是專業拓展課程。本課程圍繞對 Mathematica 軟體的學習介 紹 15 個左右的數學實驗:微積分基礎、圓周率 π 的計算、最佳分數近似值、數列與級數、 素數、幾何變換、無體運動、方程的迭代求解、函數極值的線搜索、最速降線、分形的概念 與產生、混沌現象、計算機模擬、密碼、初等幾何定理的計算機證明等。

18.課程名稱:計算機網路 Computer Networks 總學時:54(18+36) 周學時:1+2 學分: 3 開課學期:五 修讀對象:選修 預修課程:大學計算機基礎Ⅰ-Ⅱ, 內容簡介: 《計算機網路》是素質拓展課程。主要讓學生掌握各種計算機網路的相關知識, 網路的設計理論、設計思路和方法技巧,了解主流的計算機網路協議,網路的發展趨勢以及 它的應用前景。

19.課程名稱:C 語言程序設計 Programming in C Language 總學時:54(36+18) 周學時:2+1 學分: 3 開課學期:五 修讀對象:必修 預修課程:大學計算機基礎Ⅰ-Ⅱ 內容簡介: 《C 語言程序設計》是素質拓展課程。它是一種常用的程序設計語言,是編程人 員最廣泛使用的工具。

20.課程名稱:模糊數學 Fuzzy Mathematics 總學時: 54 周學時: 3 學分: 2 開課學期:六 修讀對象:選修 預修課程:數學分析、高等代數、概率論、數理統計、離散數學 內容簡介: 《模糊數學》是素質拓展課程,模糊數學是以模糊集合論為基礎而發展起來的一 門新興學科,是用數學處理各種各樣的模糊現象。主要內容包括:模糊集的基本概念,模糊 模式識別,模糊聚類分析,模糊綜合評判,集值統計與程度分析,綜合分析,綜合評判的逆 問題等。模糊數學擴大了數學的應用領域。

21.課程名稱:數學專業英語 Specialty English in Mathematics 總學時: 54 周學時: 3 學分: 2 開課學期:七 修讀對象:選修 預修課程:數學分析、高等代數、大學英語 內容簡介: 《數學專業英語》是素質拓展課程,數學專業英語是為學生進一步深造數學,進行 數學方獻檢索工作或掌握計算機軟體和科學計算中經常碰到的數學英語詞彙而設立的一門 課程。 熟悉數學專業英語, 就等於掌握了研究數學的一種語言工具, 並為科技翻譯培養素質。

22.課程名稱:偏微分方程 Partial Differential Equa第8/10頁
tions 總學時: 54 周學時: 3 學分: 2 開課學期:七 修讀對象:選修 預修課程:數學分析 高等代數 常微分方程 內容簡介: 《偏微分方程》是素質拓展課程,它是一門應用基礎學科,一方面與現代數學中 分析、幾何等基本理論密切相關,同時又在物理、力學、生物、化學等自然科學及經濟、金 融等社會科學中有重要的應用背景。

23.課程名稱:競賽數學 Competition Mathematics 總學時: 54 周學時: 3 學分: 2 開課學期:七 修讀對象:選修 預修課程:中等數學解題研究 內容簡介: 《競賽數學》是素質拓展課程,作為一門數學教育學科,奧林匹克數學本身並不 是一個數學分支,它是一個類似於中學數學、大學數學、趣味數學等這樣的特定數學范疇。

24.課程名稱:數學基礎教育案例研究 Case of Mathematics Teaching in Middle Schools 總學時: 54 周學時: 3 學分: 2 開課學期:七 修讀對象:選修 預修課程:教育心理學,中學數學教材教法 內容簡介: 《數學基礎教育案例研究》是素質拓展課程,主要內容包括案例的數學教育主題 與背景分析、數學教育情景描述(或演示) 、數學教育注釋和案例詮釋與研究。

物理專業的數學課程有:
1.數學物理方法
Mathematical
課程編號:22189906 課程編號: 課程性質:專業必修課 課程性質: 課程內容: 數學是物理學的表述語言。 復變函數論和數學物理方程是學習理論物理課程的重 課程內容: 要的數學基礎。 該課程包括復變函數論和數學物理方程兩部分。 復變函數論部分 介紹復變函數的微積分,級數展開,留數及其應用以及積分變換等內容。數學物 理方程部分包括物理學中常用的幾種數學物理方程的導入、 解數學物理方程的分 離變數法、 作為勒讓德方程的解的勒讓德多項式和作為貝塞爾方程的解的貝塞爾 函數及其性質以及格林函數的基本知識。該課程有著邏輯推理抽象嚴謹的特點, 同時與物理以及工程又有著緊密的聯系, 是理工科學生必備的數學基礎知識。

F. 大學數學專業都有哪些課程要詳細

專業基礎課有數學分析、高等代數、解析幾何、概率論與數理統計。這三者是老三門,將來如果考研時要用到的。近代數學的新三門是拓撲學、實變函數與泛函分析、近世代數(也叫抽象代數)。另外其他的一些常見的包括數學分析、微分幾何、高等幾何、常微分方程、偏微分方程、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。

拓展資料:

1. 數學源自於古希臘語,是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。

2. 數學專業培養德、智、體、美全面發展的掌握數學與應用數學科學的基本理論、基礎知識和基本方法,能夠運用數學知識和使用計算機解決若干實際數學問題,具有現代教育觀念,適應教育改革需要,以及具有良好的知識更新能力和創新能力的中等學校數學師資和教育、教學管理工作及科學研究的專門人才。

3. 計算數學是伴隨著計算機的出現而迅猛發展起來的新學科,涉及計算物理、計算化學、計算力學、計算材料學、環境科學、地球科學、金融保險等眾多交叉學科。它運用現代數學理論與方法解決各類科學與工程問題,分析和提高計算的可靠性、有效性和精確性,研究各類數值軟體的開發技術。既突出了解決信息、電子與計算機領域中的某些核心理論技術問題,又注意到從這些高新技術中抽象出新的數學理論;在保持應用數學與計算數學主體研究方向優勢的基礎上,重視並加強信息科學的數學基礎、數據分析與統計計算、科學計算、現代優化、電子系統的數值模擬、生物系統的數學建模等研究。

G. 大學數學難嗎,大學數學系都學什麼

數學系的主要課程有:數學分析、高等代數、解析幾何、普通物理、概率論、數學建模、近世代數、高等幾何、微分幾何、常微分方程、復變函數、實變函數、初等數學研究、數學實驗等。

H. 大學中數學與應用數學專業是什麼

數學與應用數學專業培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算內機解決實際問容題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。
數學與應用數學專業屬於基礎專業。無論是進行科研數據分析、軟體開發,還是從事金融保險,國際經濟與貿易、化工制葯、通訊工程、建築設計等,都離不開相關的數學知識。可見數學與應用數學專業是從事其他相關專業的基礎。隨著科技事業的發展和普及,數學專業與其他相關專業的聯系將會更加緊密,數學知識將會得到更廣泛的應用。

熱點內容
四川農業大學申請考核博士 發布:2025-10-20 08:58:11 瀏覽:981
福田雷沃重工本科生待遇怎麼樣 發布:2025-10-20 08:53:49 瀏覽:575
華為要本科生嗎 發布:2025-10-20 08:25:41 瀏覽:550
2008年青島本科生工資 發布:2025-10-20 08:04:24 瀏覽:444
東北大學藝術考研 發布:2025-10-20 07:38:35 瀏覽:299
我的大學生活txt 發布:2025-10-20 07:35:28 瀏覽:25
人民大學外語系考研 發布:2025-10-20 07:31:12 瀏覽:894
上海交通大學考研輔導班 發布:2025-10-20 07:24:54 瀏覽:420
華中農業大學細胞生物學考研群 發布:2025-10-20 07:09:36 瀏覽:558
南京大學2016考研線 發布:2025-10-20 06:43:12 瀏覽:930